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ABSTRACT
To alleviate sparsity and cold start problem of collaborative filtering
based recommender systems, researchers and engineers usually
collect attributes of users and items, and design delicate algorithms
to exploit these additional information. In general, the attributes are
not isolated but connected with each other, which forms a knowl-
edge graph (KG). In this paper, we propose Knowledge Graph
Convolutional Networks (KGCN), an end-to-end framework that
captures inter-item relatedness effectively by mining their associ-
ated attributes on the KG. To automatically discover both high-order
structure information and semantic information of the KG, we sam-
ple from the neighbors for each entity in the KG as their receptive
field, then combine neighborhood information with bias when cal-
culating the representation of a given entity. The receptive field can
be extended to multiple hops away to model high-order proximity
information and capture users’ potential long-distance interests.
Moreover, we implement the proposed KGCN in a minibatch fash-
ion, which enables our model to operate on large datasets and KGs.
We apply the proposed model to three datasets about movie, book,
and music recommendation, and experiment results demonstrate
that our approach outperforms strong recommender baselines.
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1 INTRODUCTION
With the advance of Internet technology, people can access a vast
amount of online content, such as news [25], movies [5], and com-
modities [26]. A notorious problem with online platforms is that
the volume of items can be overwhelming to users. To alleviate the
impact of information overloading, recommender systems (RS) is
proposed to search for and recommend a small set of items to meet
users’ personalized interests.

A traditional recommendation technique is collaborative filtering
(CF), which assigns users and items ID-based representation vectors,
then models their interactions by specific operation such as inner
product [16] or neural networks [8]. However, CF-based methods
usually suffer from sparsity of user-item interactions and the cold
start problem. To address these limitations, researchers usually turn
to feature-rich scenarios, where attributes of users and items are
used to compensate for the sparsity and improve the performance
of recommendation [3, 17].

A few recent studies [9, 18, 19, 22–24] have gone a step further
than simply using attributes: They point out that attributes are not
isolated but linked up with each other, which forms a knowledge
graph (KG). Typically, a KG is a directed heterogeneous graph in
which nodes correspond to entities (items or item attributes) and
edges correspond to relations. Compared with KG-free methods,
incorporating KG into recommendation benefits the results in three
ways [18]: (1) The rich semantic relatedness among items in a KG
can help explore their latent connections and improve the precision
of results; (2) The various types of relations in a KG are helpful for
extending a user’s interests reasonably and increasing the diversity
of recommended items; (3) KG connects a user’s historically-liked
and recommended items, thereby bringing explainability to recom-
mender systems.

Despite the above benefits, utilizing KG in RS is rather challeng-
ing due to its high dimensionality and heterogeneity. One feasible
way is to preprocess the KG by knowledge graph embedding (KGE)
methods [20], which map entities and relations to low-dimensional
representation vectors [9, 19, 23]. However, commonly-used KGE
methods focus on modeling rigorous semantic relatedness (e.g.,
TransE [1] and TransR [12] assume head + relation = tail ), which
are more suitable for in-graph applications such as KG completion
and link prediction rather than recommendation. A more natu-
ral and intuitive way is to design a graph algorithm directly to
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exploit the KG structure [18, 22, 24]. For example, PER [22] and
FMG [24] treat KG as a heterogeneous information network, and
extract meta-path/meta-graph based latent features to represent
the connectivity between users and items along different types
of relation paths/graphs. However, PER and FMG rely heavily on
manually designed meta-paths or meta-graphs, which are hardly
to be optimal in reality. RippleNet [18] is a memory-network-like
model that propagates users’ potential preferences in the KG and
explores their hierarchical interests. But note that the importance
of relations is weakly characterized in RippleNet, because the em-
bedding matrix of a relation R can hardly be trained to capture
the sense of importance in the quadratic form v⊤Rh (v and h are
embedding vectors of two entities). In addition, the size of ripple
set may go unpredictably with the increase of the size of KG, which
incurs heavy computation and storage overhead.

In this paper, we investigate the problem of KG-aware recom-
mendation. Our design objective is to automatically capture both
high-order structure and semantic information in the KG. Inspired
by graph convolutional networks (GCN)1 that try to generalize
convolution to the graph domain, we propose Knowledge Graph
Convolutional Networks (KGCN) for recommender systems. The
key idea of KGCN is to aggregate and incorporate neighborhood in-
formation with bias when calculating the representation of a given
entity in the KG. Such a design has two advantages: (1) Through the
operation of neighborhood aggregation, the local proximity struc-
ture is successfully captured and stored in each entity. (2) Neighbors
are weighted by scores dependent on the connecting relation and
specific user, which characterizes both the semantic information of
KG and users’ personalized interests in relations. Note that the size
of an entity’s neighbors varies and may be prohibitively large in
the worst case. Therefore, we sample a fixed-size neighborhood of
each node as the receptive field, which makes the cost of KGCN pre-
dictable. The definition of neighborhood for a given entity can also
be extended hierarchically to multiple hops away to model high-
order entity dependencies and capture users’ potential long-distance
interests.

Empirically, we apply KGCN to three datasets: MovieLens-20M
(movie), Book-Crossing (book), and Last.FM (music). The exper-
iment results show that KGCN achieves average AUC gains of
4.4%, 8.1%, and 6.2% in movie, book, and music recommendations,
respectively, compared with state-of-the-art baselines for recom-
mendation.

Our contribution in this paper are summarized as follows:
• We propose knowledge graph convolutional networks, an
end-to-end framework that explores users’ preferences on
the knowledge graph for recommender systems. By extend-
ing the receptive field of each entity in the KG, KGCN is able
to capture users’ high-order personalized interests.
• We conduct experiments on three real-world recommen-
dation scenarios. The results demonstrate the efficacy of
KGCN-LS over state-of-the-art baselines.
• We release the code of KGCN and datasets (knowledge graphs)
to researchers for validating the reported results and con-
ducting further research. The code and the data are available
at https://github.com/hwwang55/KGCN.

1We will revisit GCN in related work.

2 RELATEDWORK
Our method is conceptually inspired by GCN. In general, GCN
can be categorized as spectral methods and non-spectral methods.
Spectral methods represent graphs and perform convolution in the
spectral space. For example, Bruna et al. [2] define the convolution
in Fourier domain and calculates the eigendecomposition of the
graph Laplacian, Defferrard et al. [4] approximate the convolutional
filters by Chebyshev expansion of the graph Laplacian, and Kipf et al.
[10] propose a convolutional architecture via a localized first-order
approximation of spectral graph convolutions. In contrast, non-
spectral methods operate on the original graph directly and define
convolution for groups of nodes. To handle the neighborhoods
with varying size and maintain the weight sharing property of
CNN, researchers propose learning a weight matrix for each node
degree [6], extracting locally connected regions from graphs [13],
or sampling a fixed-size set of neighbors as the support size [7].
Our work can be seen as a non-spectral method for a special type
of graphs (i.e., knowledge graph).

Our method also connects to PinSage [21] and GAT [15]. But
note that both PinSage and GAT are designed for homogeneous
graphs. The major difference between our work and the literature
is that we offer a new perspective for recommender systems with
the assistance of a heterogeneous knowledge graph.

3 KNOWLEDGE GRAPH CONVOLUTIONAL
NETWORKS

In this section, we introduce the proposed KGCN model. We first
formulate the knowledge-graph-aware recommendation problem.
Then we present the design of a single layer of KGCN. At last, we
introduce the complete learning algorithm for KGCN, as well as its
minibatach implementation.

3.1 Problem Formulation
We formulate the knowledge-graph-aware recommendation prob-
lem as follows. In a typical recommendation scenario, we have
a set of M users U = {u1,u2, ...,uM } and a set of N items V =
{v1,v2, ...,vN }. The user-item interaction matrix Y ∈ RM×N is
defined according to users’ implicit feedback, where yuv = 1 indi-
cates that useru engages with itemv , such as clicking, browsing, or
purchasing; otherwise yuv = 0. Additionally, we also have a knowl-
edge graph G, which is comprised of entity-relation-entity triples
(h, r , t ). Here h ∈ E, r ∈ R, and t ∈ E denote the head, relation,
and tail of a knowledge triple, E and R are the set of entities and
relations in the knowledge graph, respectively. For example, the
triple (A Song of Ice and Fire, book.book.author, George Martin) states
the fact that George Martin writes the book “A Song of Ice and Fire".
In many recommendation scenarios, an item v ∈ V corresponds to
one entity e ∈ E. For example, in book recommendation, the item
“A Song of Ice and Fire" also appears in the knowledge graph as an
entity with the same name.

Given the user-item interaction matrix Y as well as the knowl-
edge graph G, we aim to predict whether user u has potential
interest in item v with which he has had no interaction before. Our
goal is to learn a prediction function ŷuv = F (u,v |Θ,Y,G), where
ŷuv denotes the probability that user u will engage with item v ,
and Θ denotes the model parameters of function F .
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3.2 KGCN Layer
KGCN is proposed to capture high-order structural proximity among
entities in a knowledge graph.We start by describing a single KGCN
layer in this subsection. Consider a candidate pair of user u and
item (entity) v . We use N (v ) to denote the set of entities directly
connected to v ,2 and rei ,ej to denote the relation between entity ei
and ej . We also use a function д : Rd ×Rd → R (e.g., inner product)
to compute the score between a user and a relation:

πur = д(u, r), (1)

where u ∈ Rd and r ∈ Rd are the representations of user u and
relation r , respectively, d is the dimension of representations. In
general, πur characterizes the importance of relation r to user u. For
example, a user may have more potential interests in the movies
that share the same “star" with his historically liked ones, while
another user may be more concerned about the “genre" of movies.

To characterize the topological proximity structure of itemv , we
compute the linear combination of v’s neighborhood:

vu
N (v ) =

∑
e ∈N (v )

π̃urv,e e, (2)

where π̃urv,e is the normalized user-relation score

π̃urv,e =
exp (πurv,e )∑

e ∈N (v ) exp (πurv,e )
, (3)

and e is the representation of entity e . User-relation scores act
as personalized filters when computing an entity’s neighborhood
representation, since we aggregate the neighbors with bias with
respect to these user-specific scores.

In a real-world knowledge graph, the size of N (e ) may vary
significantly over all entities. To keep the computational pattern of
each batch fixed and more efficient, we uniformly sample a fixed-
size set of neighbors for each entity instead of using its full neigh-
bors. Specifically, we compute the neighborhood representation of
entity v as vu

S (v ) , where S (v ) ≜ {e | e ∼ N (v )} and |S (v ) | = K is
a configurable constant.3 In KGCN, S (v ) is also called the (single-
layer) receptive field of entity v , as the final representation of v is
sensitive to these locations. Figure 1a gives an illustrative example
of a two-layer receptive field for a given entity, where K is set as 2.

The final step in a KGCN layer is to aggregate the entity represen-
tation v and its neighborhood representation vu

S (v ) into a single vec-

tor. We implement three types of aggregators aдд : Rd × Rd → Rd
in KGCN:
• Sum aggregator takes the summation of two representation
vectors, followed by a nonlinear transformation:

aддsum = σ
(
W · (v + vu

S (v ) ) + b
)
, (4)

whereW and b are transformation weight and bias, respec-
tively, and σ is the nonlinear function such ReLU.
• Concat aggregator [7] concatenates the two representation
vectors first before applying nonlinear transformation:

aддconcat = σ
(
W · concat (v, vu

S (v ) ) + b
)
. (5)

2The knowledge graph G is treated undirected.
3Technically, S (v ) may contain duplicates if N (v ) < K .
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Figure 1: (a) A two-layer receptive field (green entities) of the
blue entity in a KG. (b) The framework of KGCN.

• Neighbor aggregator [15] directly takes the neighborhood
representation of entity v as the output representation:

aддneiдhbor = σ
(
W · vu

S (v ) + b
)
. (6)

Aggregation is a key step in KGCN, because the representation of
an item is bound up with its neighbors by aggregation. We will
evaluate the three aggregators in experiments.

3.3 Learning Algorithm
Through a single KGCN layer, the final representation of an entity
is dependent on itself as well as its immediate neighbors, which we
name 1-order entity representation. It is natural to extend KGCN
from one layer to multiple layers to reasonably explore users’ poten-
tial interests in a broader and deeper way. The technique is intuitive:
Propagating the initial representation of each entity (0-order repre-
sentation) to its neighbors leads to 1-order entity representation,
then we can repeat this procedure, i.e., further propagating and ag-
gregating 1-order representations to obtain 2-order ones. Generally
speaking, the h-order representation of an entity is a mixture of
initial representations of itself and its neighbors up to h hops away.
This is an important property for KGCN, which we will discuss in
the next subsection.

The formal description of the above steps is presented in Al-
gorithm 1. H denotes the maximum depth of receptive field (or
equivalently, the number of aggregation iterations), and a suffix [h]
attached by a representation vector denotes h-order. For a given
user-item pair (u,v ) (line 2), we first calculate the receptive fieldM
of v in an iterative layer-by-layer manner (line 3, 13-19). Then the
aggregation is repeated H times (line 5): In iteration h, we calculate
the neighborhood representation of each entity e ∈ M[h] (line 7),
then aggregate it with its own representation eu [h − 1] to obtain
the one to be used at the next iteration (line 8). The final H -order
entity representation is denoted as vu (line 9), which is fed into a
function f : Rd × Rd → R together with user representation u for
predicting the probability:

ŷuv = f (u, vu ). (7)

Figure 1b illustrates the KGCN algorithm in one iteration, in
which the entity representation vu [h] and neighborhood repre-
sentations (green nodes) of a given node are mixed to form its
representation for the next iteration (blue node).
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Algorithm 1: KGCN algorithm
Input: Interaction matrix Y; knowledge graph G (E,R );

neighborhood sampling mapping S : e → 2E ; trainable
parameters: {u}u ∈U , {e}e ∈E , {r}r ∈R , {Wi , bi }Hi=1;
hyper-parameters: H , d , д(·), f (·), σ (·), aдд(·)

Output: Prediction function F (u,v |Θ,Y,G)
1 while KGCN not converge do
2 for (u,v ) in Y do
3 {M[i]}Hi=0 ← Get-Receptive-Field (v);
4 eu [0]← e,∀e ∈ M[0];
5 for h = 1, ...,H do
6 for e ∈ M[h] do
7 eu

S (e )[h − 1]←
∑
e ′∈S (e ) π̃

u
re,e′ e

′u [h − 1];

8 eu [h]← aдд
(
eu
S (e )[h − 1], e

u [h − 1]
)
;

9 vu ← eu [H ];
10 Calculate predicted probability ŷuv = f (u, vu );
11 Update parameters by gradient descent;

12 return F ;

13 Function Get-Receptive-Field (v)
14 M[H ]← v ;
15 for h = H − 1, ..., 0 do
16 M[h]←M[h + 1];
17 for e ∈ M[h + 1] do
18 M[h]←M[h] ∪ S (e );

19 return {M[i]}Hi=0;

Note that Algorithm 1 traverses all possible user-item pairs (line
2). To make computation more efficient, we use a negative sampling
strategy during training. The complete loss function is as follows:

L =
∑
u∈U

( ∑
v :yuv=1

J (yuv , ŷuv ) −
Tu∑
i=1
Evi∼P (vi )J (yuvi , ŷuvi )

)
+ λ ∥F ∥22,

(8)

where J is cross-entropy loss, P is a negative sampling distribution,
and Tu is the number of negative samples for user u. In this paper,
Tu = |{v : yuv = 1}| and P follows a uniform distribution. The last
term is the L2-regularizer.

4 EXPERIMENTS
In this section, we evaluate KGCN on three real-world scenarios:
movie, book, and music recommendations.

4.1 Datasets
We utilize the following three datasets in our experiments for movie,
book, and music recommendation, respectively:
• MovieLens-20M4 is a widely used benchmark dataset in
movie recommendations, which consists of approximately
20 million explicit ratings (ranging from 1 to 5) on the Movie-
Lens website.

4https://grouplens.org/datasets/movielens/

Table 1: Basic statistics and hyper-parameter settings for the
three datasets (K : neighbor sampling size, d: dimension of
embeddings, H : depth of receptive field, λ: L2 regularizer
weight, η: learning rate).

MovieLens-20M Book-Crossing Last.FM
# users 138,159 19,676 1,872
# items 16,954 20,003 3,846

# interactions 13,501,622 172,576 42,346
# entities 102,569 25,787 9,366
# relations 32 18 60
# KG triples 499,474 60,787 15,518

K 4 8 8
d 32 64 16
H 2 1 1
λ 10−7 2 × 10−5 10−4
η 2 × 10−2 2 × 10−4 5 × 10−4

batch size 65,536 256 128

• Book-Crossing5 contains 1 million ratings (ranging from
0 to 10) of books in the Book-Crossing community.
• Last.FM6 contains musician listening information from a
set of 2 thousand users from Last.fm online music system.

Since the three datasets are explicit feedbacks, we transform
them into implicit feedback where each entry is marked with 1
indicating that the user has rated the item positively, and sample an
unwatched set marked as 0 for each user. The threshold of positive
rating is 4 for MovieLens-20M, while no threshold is set for Book-
Crossing and Last.FM due to their sparsity.

We use Microsoft Satori7 to construct the knowledge graph for
each dataset. We first select a subset of triples from the whole KG
with a confidence level greater than 0.9. Given the sub-KG, we
collect Satori IDs of all valid movies/books/musicians by matching
their names with tail of triples (head, film.film.name, tail), (head,
book.book.title, tail), or (head, type.object.name, tail). Items with
multiple matched or no matched entities are excluded for simplicity.
We then match the item IDs with the head of all triples and select
all well-matched triples from the sub-KG. The basic statistics of the
three datasets are presented in Table 1.

4.2 Baselines
We compare the proposed KGCN with the following baselines, in
which the first two baselines are KG-free while the rest are all
KG-aware methods. Hyper-parameter settings for baselines are
introduced in the next subsection.
• SVD [11] is a classic CF-based model using inner product to
model user-item interactions.8
• LibFM [14] is a feature-based factorization model in CTR
scenarios. We concatenate user ID and item ID as input for
LibFM.

5http://www2.informatik.uni-freiburg.de/~cziegler/BX/
6https://grouplens.org/datasets/hetrec-2011/
7https://searchengineland.com/library/bing/bing-satori
8We have tried NCF [8], i.e., replacing inner product with neural networks, but the
result is inferior to SVD. Since SVD and NCF are similar, we only present the better
one here.
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Table 2: The results of AUC and F1 in CTR prediction.

Model MovieLens-20M Book-Crossing Last.FM
AUC F1 AUC F1 AUC F1

SVD 0.963 (-1.5%) 0.919 (-1.4%) 0.672 (-8.9%) 0.635 (-7.7%) 0.769 (-3.4%) 0.696 (-3.5%)
LibFM 0.959 (-1.9%) 0.906 (-2.8%) 0.691 (-6.4%) 0.618 (-10.2%) 0.778 (-2.3%) 0.710 (-1.5%)

LibFM + TransE 0.966 (-1.2%) 0.917 (-1.6%) 0.698 (-5.4%) 0.622 (-9.6%) 0.777 (-2.4%) 0.709 (-1.7%)
PER 0.832 (-14.9%) 0.788 (-15.5%) 0.617 (-16.4%) 0.562 (-18.3%) 0.633 (-20.5%) 0.596 (-17.3%)
CKE 0.924 (-5.5%) 0.871 (-6.5%) 0.677 (-8.3%) 0.611 (-11.2%) 0.744 (-6.5%) 0.673 (-6.7%)

RippleNet 0.968 (-1.0%) 0.912 (-2.1%) 0.715 (-3.1%) 0.650 (-5.5%) 0.780 (-2.0%) 0.702 (-2.6%)
KGCN-sum 0.978 0.932* 0.738 0.688* 0.794 (-0.3%) 0.719 (-0.3%)
KGCN-concat 0.977 (-0.1%) 0.931 (-0.1%) 0.734 (-0.5%) 0.681 (-1.0%) 0.796* 0.721*

KGCN-neighbor 0.977 (-0.1%) 0.932* 0.728 (-1.4%) 0.679 (-1.3%) 0.781 (-1.9%) 0.699 (-3.1%)
KGCN-avg 0.975 (-0.3%) 0.929 (-0.3%) 0.722 (-2.2%) 0.682 (-0.9%) 0.774 (-2.8%) 0.692 (-4.0%)

* Statistically significant improvement by unpaired two-sample t -test with p = 0.1.

• LibFM + TransE extends LibFM by attaching an entity rep-
resentation learned by TransE [1] to each user-item pair.
• PER [22] treats the KG as heterogeneous information net-
works and extracts meta-path based features to represent
the connectivity between users and items.
• CKE [23] combines CF with structural, textual, and visual
knowledge in a unified framework for recommendation. We
implement CKE as CF plus a structural knowledge module
in this paper.
• RippleNet [18] is a memory-network-like approach that
propagates users’ preferences on the KG for recommenda-
tion.

4.3 Experiments Setup
In KGCN, we set functions д and f as inner product, σ as ReLU
for non-last-layer aggregator and tanh for last-layer aggregator.
Other hyper-parameter settings are provided in Table 1. The hyper-
parameters are determined by optimizing AUC on a validation set.
For each dataset, the ratio of training, evaluation, and test set is
6 : 2 : 2. Each experiment is repeated 3 times, and the average per-
formance is reported. We evaluate our method in two experiment
scenarios: (1) In click-through rate (CTR) prediction, we apply the
trainedmodel to predict each interaction in the test set.We useAUC
and F1 to evaluate CTR prediction. (2) In top-K recommendation,
we use the trained model to select K items with highest predicted
click probability for each user in the test set, and choose Recall@K
to evaluate the recommended sets. All trainable parameters are op-
timized by Adam algorithm. The code of KGCN-LS is implemented
under Python 3.6, TensorFlow 1.12.0, and NumPy 1.14.3.

The hyper-parameter settings for baselines are as follows. For
SVD, we use the unbiased version (i.e., the predicted rating is mod-
eled as rpq = p⊤q). The dimension and learning rate for the four
datasets are set as: d = 8, η = 0.5 for MovieLens-20M, Book-
Crossing; d = 8, η = 0.1 for Last.FM. For LibFM, the dimension
is {1, 1, 8} and the number of training epochs is 50. The dimen-
sion of TransE is 32. For PER, we use manually designed user-
item-attribute-item paths as features (i.e., “user-movie-director-
movie", “user-movie-genre-movie", and “user-movie-star-movie" for
MovieLens-20M; “user-book-author-book" and “user-book-genre-
book" for Book-Crossing, “user-musician-date_of_birth-musician"

(date of birth is discretized), “user-musician-country-musician", and
“user-musician-genre-musician" for Last.FM). For CKE, the dimen-
sion of the three datasets are 64, 128, 64. The training weight for
KG part is 0.1 for all datasets. The learning rate are the same as in
SVD. For RippleNet, d = 8, H = 2, λ1 = 10−6, λ2 = 0.01, η = 0.01
for MovieLens-20M; d = 16, H = 3, λ1 = 10−5, λ2 = 0.02, η = 0.005
for Last.FM. Other hyper-parameters are the same as reported in
their original papers or as default in their codes.

4.4 Results
The results of CTR prediction and top-K recommendation are pre-
sented in Table 2 and Figure 2, respectively (SVD, LibFM and other
variants of KGCN are not plotted in Figure 2 for clarity). We have
the following observations:

• In general, we find that the improvements of KGCN on
book and music are higher than movie. This demonstrates
that KGCN can well address sparse scenarios, since Book-
Crossing and Last.FM are much sparser than MovieLens-
20M.
• The performance of KG-free baselines, SVD and LibFM, are
actually better than the two KG-aware baselines PER and
CKE, which indicates that PER and CKE cannot make full use
of the KG with manually designed meta-paths and TransR-
like regularization.
• LibFM + TransE is better than LibFM in most cases, which
demonstrates that the introduction of KG is helpful for rec-
ommendation in general.
• PER performs worst among all baselines, since it is hard to
define optimal meta-paths in reality.
• RippleNet shows strong performance compared with other
baselines. Note that RippleNet also uses multi-hop neighbor-
hood structure, which interestingly shows that capturing
proximity information in the KG is essential for recommen-
dation.

The last four rows in Table 2 summarize the performance of
KGCN variants. The first three (sum, concat, neighbor) correspond
to different aggregators introduced in the preceding section, while
the last variant KGCN-avg is a reduced case of KGCN-sum where
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Figure 2: The results of Recall@K in top-K recommendation.

Table 3: AUC result of KGCN with different neighbor sam-
pling size K .

K 2 4 8 16 32 64
MovieLens-20M 0.978 0.979 0.978 0.978 0.977 0.978
Book-Crossing 0.680 0.727 0.736 0.725 0.711 0.723

Last.FM 0.791 0.794 0.795 0.793 0.794 0.792

Table 4: AUC result of KGCN with different depth of recep-
tive field H .

H 1 2 3 4
MovieLens-20M 0.972 0.976 0.974 0.514
Book-Crossing 0.738 0.731 0.684 0.547

Last.FM 0.794 0.723 0.545 0.534

neighborhood representations are directly averaged without user-
relation scores (i.e., vu

N (v ) =
∑
e ∈N (v ) e instead of Eq. (2)). There-

fore, KGCN-avg is used to examine the efficacy of the “attention
mechanism". From the results we find that:
• KGCN outperforms all baselines by a significant margin,
while their performances are slightly distinct: KGCN-sum
performs best in general, while the performance of KGCN-
neighbor shows a clear gap on Book-Crossing and Last.FM.
This may be because the neighbor aggregator uses the neigh-
borhood representation only, thus losing useful information
from the entity itself.
• KGCN-avg performs worse than KGCN-sum, especially in
Book-Crossing and Last.FM where interactions are sparse.
This demonstrates that capturing users’ personalized pref-
erences and semantic information of the KG do benefit the
recommendation.

4.4.1 Impact of neighbor sampling size. We vary the size of sampled
neighbor K to investigate the efficacy of usage of the KG. From
Table 3 we observe that KGCN achieves the best performance when
K = 4 or 8. This is because a too small K does not have enough
capacity to incorporate neighborhood information, while a too
large K is prone to be misled by noises.

4.4.2 Impact of depth of receptive field. We investigate the influ-
ence of depth of receptive field in KGCN by varying H from 1 to 4.
The results are shown in Table 4, which demonstrate that KGCN

Table 5: AUC result of KGCN with different dimension of
embedding.

d 4 8 16 32 64 128
MovieLens-20M 0.968 0.970 0.975 0.977 0.973 0.972
Book-Crossing 0.709 0.732 0.733 0.735 0.739 0.736

Last.FM 0.789 0.793 0.797 0.793 0.790 0.789

is more sensitive to H compared to K . We observe the occurrence
of serious model collapse when H = 3 or 4, as a larger H brings
massive noises to the model. This is also in accordance with our
intuition, since a too long relation-chain makes little sense when
inferring inter-item similarities. An H of 1 or 2 is enough for real
cases according to the experiment results.

4.4.3 Impact of dimension of embedding. Lastly, we examine the
influence of dimension of embedding d on performance of KGCN.
The result in Table 5 is rather intuitive: Increasing d initially can
boost the performance since a largerd can encodemore information
of users and entities, while a too large d adversely suffers from
overfitting.

5 CONCLUSIONS AND FUTUREWORK
This paper proposes knowledge graph convolutional networks
for recommender systems. KGCN extends non-spectral GCN ap-
proaches to the knowledge graph by aggregating neighborhood
information selectively and biasedly, which is able to learn both
structure information and semantic information of the KG as well
as users’ personalized and potential interests. We also implement
the proposed method in a minibatch fashion, which is able to op-
erate on large datasets and knowledge graphs. Through extensive
experiments on real-world datasets, KGCN is shown to consistently
outperform state-of-the-art baselines in movie, book, and music
recommendation.

We point out three avenues for future work. (1) In this work we
uniformly sample from the neighbors of an entity to construct its
receptive field. Exploring a non-uniform sampler (e.g., importance
sampling) is an important direction of future work. (2) This paper
(and all literature) focuses on modeling item-end KGs. An interest-
ing direction of future work is to investigate whether leveraging
user-end KGs is useful in improving the performance of recommen-
dation. (3) Designing an algorithm to well combine KGs at the two
ends is also a promising direction.
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