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Figure 1. Neural LightRig takes an image as input and generates multi-light images to assist the estimation of high-quality normal and
PBR materials, which can be used to render realistic relit images under various environment lighting.

Abstract

Recovering the geometry and materials of objects from a
single image is challenging due to its under-constrained na-
ture. In this paper, we present Neural LightRig, a novel
framework that boosts intrinsic estimation by leveraging
auxiliary multi-lighting conditions from 2D diffusion pri-
ors. Specifically, 1) we first leverage illumination priors
from large-scale diffusion models to build our multi-light
diffusion model on a synthetic relighting dataset with ded-
icated designs. This diffusion model generates multiple
consistent images, each illuminated by point light sources

* Equal contribution. Work done during Zexin He’s internship at
Shanghai AI Lab.

in different directions. 2) By using these varied light-
ing images to reduce estimation uncertainty, we train a
large G-buffer model with a U-Net backbone to accurately
predict surface normals and materials. Extensive experi-
ments validate that our approach significantly outperforms
state-of-the-art methods, enabling accurate surface normal
and PBR material estimation with vivid relighting effects.
Code and dataset are available on our project page at
https://projects.zxhezexin.com/neural-lightrig.

1. Introduction
Recovering the geometry and physically-based rendering
(PBR) materials of real-world objects from images is a piv-
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otal problem in graphics and computer vision. This task,
also known as inverse rendering, facilitates a wide range
of applications, such as video gaming, augmented and vir-
tual reality, and robotics. In this paper, we proposed a data-
driven approach for jointly estimating the surface normal
and PBR materials of objects from a single image. Due
to the complex interaction among geometry, materials, and
environmental lighting, this ill-posed problem remains par-
ticularly challenging.

Prior research [6, 17] has predominantly focused on
optimization-based generation through differentiable ren-
dering, which compares forward-rendered images with in-
put images to refine normals and PBR materials. How-
ever, these methods are often time-consuming and heav-
ily reliant on the capabilities of the differentiable ren-
derer [27]. Though some works explored feed-forward es-
timation [34, 54, 57], their quality and generalizability still
remain challenging, due to the inherently ill-posed nature of
inferring geometry and materials from a single image.

For precise normal and material acquisition, photometric
stereo techniques [51] are widely employed, as they miti-
gate ambiguity by capturing multiple images from the same
viewpoint with various lighting. These images are illumi-
nated by different point light sources, which provide vari-
ations in surface reflectance to enrich information. How-
ever, such methods [10, 13, 28] often require complex cap-
ture systems with sophisticated cameras or lighting setups,
which can be costly and impractical for in-the-wild images.
Given the promising advances in image diffusion models,
we ask the question: can we develop a multi-light diffu-
sion model to simulate images illuminated by different di-
rectional light sources, thereby improving surface normal
and material estimation (as shown in Fig. 1)?

Our motivation arises from recent advances in 3D gener-
ation, which employ diffusion models [30, 43] to generate
multi-view images and train reconstruction models [21] for
3D reconstruction. These multi-view diffusion models have
demonstrated the potential to manipulate camera views of
pre-trained image diffusion models such as Stable Diffu-
sion [38]. Similarly, we aim to expand the use of pre-trained
diffusion models for multi-light image generation.

In this work, we present Neural LightRig for joint nor-
mal and material estimation of objects from monocular im-
ages, which consists of a multi-light diffusion model and a
large prediction model. Given an input image, the multi-
light diffusion model produces consistent and high-quality
relit images under various point light sources (as shown in
Fig. 4). To achieve this, we create a synthetic relighting
dataset for training with Blender [9]. With a dedicated ar-
chitecture and training design, our diffusion model enables
the multi-light generation of objects from arbitrary cate-
gories. The large G-buffer model then processes the gen-
erated multi-light images to produce surface normals and

PBR materials, such as albedo, roughness, and metallic. We
employ a UNet architecture for efficient and high-resolution
prediction, with end-to-end supervision at the pixel level.
To bridge the domain gap between multi-light images ren-
dered from 3D objects and those generated by diffusion
models, we further design a series of data augmentation
strategies for domain alignment.

Taken together, the proposed framework demonstrates
remarkable performance on both synthetic and real-world
images. Extensive qualitative and quantitative evaluations
show that Neural LightRig surpasses existing approaches
in surface normal estimation, PBR material estimation, and
single-image relighting. Comprehensive visual results are
provided in the appendix and on our project page. Our key
contributions are as follows:
• We propose a novel approach for object normal and PBR

estimation from monocular images, reformulating this ill-
posed problem by simulating multi-lighting conditions.

• We construct a synthetic dataset for multi-light image
generation and surface property estimation. With this
dataset, we demonstrate the capability to manipulate dif-
fusion models for consistent multi-light generation.

• Extensive experiments validate the effectiveness of our
method, establishing new state-of-the-art results.

2. Related Works
Diffusion Models. Well-trained diffusion models [38, 49]
have shown promising potential in providing essential pri-
ors for under-determined tasks. Recent works showcase
the utility of image diffusion models in novel-view synthe-
sis [32, 33, 35, 43, 44, 50], which combines with reconstruc-
tion models [18, 21, 46] to achieve high-quality 3D gener-
ation. Similarly, some recent works attempt to leverage the
learned priors in diffusion models to simulate lighting varia-
tions [23, 56], but they do not account for the consistency of
multi-light generation. In contrast, we aim to generate mul-
tiple images under different lighting sources that facilitate
object surface property estimation.
Monocular Normal Estimation. Estimating surface nor-
mals from a single image is a classic yet under-determined
problem. Early works often relied on photometric cues or
handcrafted features [15, 19, 20], while later works adopted
deep learning to improve accuracy [4, 12, 26, 29, 37, 48, 52,
62]. More recently, large-scale datasets [11, 14] have fur-
ther advanced regression-based methods [2, 3, 5]. Despite
promising results, they struggle with complex details due to
inherent ambiguity. Diffusion-based methods [16, 25, 53],
turn to generative priors [38] to help address such ambigu-
ity but often fall short in accurately aligning with ground
truth, leading to deviations in finer geometric details crucial
for downstream tasks.
Material Estimation. Material estimation aims to recover
intrinsic properties from images, which is an ill-posed prob-
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Figure 2. Framework Overview. Multi-light diffusion generates multi-light images from an input image. These images with correspond-
ing lighting orientations are then used to predict surface normals and PBR materials with a regression U-Net.

lem, as multiple combinations of materials and lighting con-
ditions could lead to the same appearance, Traditional meth-
ods attempted to employ photometric stereos [13, 51] to
disambiguate this problem under controlled lighting con-
ditions [10, 28]. Some works [7, 17, 45, 58] optimize
neural representation with multi-view images. Later, the
emergence of large-scale synthetic datasets [11, 47] has
advanced data-driven approaches [31, 34, 41, 42, 54, 55],
but they still contend with under-determination. Recently,
diffusion-based methods [8, 22, 36, 57] have emerged as
a promising alternative, but often suffer from domain shift
between material images and natural images.

3. Approach
Given an image I, we aim to estimate both its surface
normal n and PBR materials (albedo a, roughness r,
and metallic m), where n,a ∈ RH×W×3 and r,m ∈
RH×W×1. These surface properties, commonly known
as G-buffers in graphics, are collectively denoted as B =
{n,a, r,m}. However, interpreting these properties from a
single lighting condition is challenging due to the the under-
constrained nature of the problem. To address this, we pro-
pose Neural LightRig, as illustrated in Fig. 2. Our approach
leverages a multi-light diffusion model (Sec. 3.1) to gen-
erate multi-light images from the input, which then act as
enriched conditions to alleviate the inherent ambiguity in
G-buffer prediction model (Sec. 3.2). We further describe
the construction of our synthetic dataset, LightProp, which
supports both stages of our framework, in Sec. 3.3.

3.1. Multi-Light Diffusion
To obtain surface reflectance variations that increase con-
textual information for accurate G-buffer estimation, we
learn a diffusion model g(·) to generate L multi-light im-
ages from the input image I:

{xi | i = 1, 2, . . . , L} = g(I). (1)

In particular, we set L = 9 to balance performance and
efficiency, covering a diverse range of lighting variations

(Fig. 4) without excessive overhead.
Generating Multi-Light Images. Collecting such train-
ing pairs is challenging due to the limited availability of 3D
objects with PBR [11, 47] and the high cost of real-world
capturing in photometric stereos [24]. Fortunately, diffu-
sion models trained on massive internet images have shown
an inherent ability to model complex 3D shapes and tex-
tures, which have been applied for novel view synthesis [43]
and relighting [23, 56]. We thus leverage the prior from
a well-trained image diffusion model and fine-tune it for
multi-light generation, arguing that such a well-trained im-
age generation model possesses the capacity to simulate di-
verse lighting conditions. Rather than generating each-light
image xi separately, we arrange nine-light images in a 3×3
grid layout to form a single image x, allowing the simulta-
neous generation for them. This simple configuration facil-
itates efficient cross-image context communication, thereby
enhancing the consistency of generated multi-light images.
Conditioning Strategy. To incorporate the input image
into the diffusion model, we employ a hybrid condition-
ing method, as illustrated in Fig. 3. As the input images
are pixel-wise aligned with the multi-light images, we nat-
urally apply channel-wise concatenation. This straightfor-
ward concatenation effectively captures the variations be-
tween the input and each multi-light image, which is es-
sential for generating accurate lighting effects. However,
we found this simple concatenation alone is inadequate for
generating high-fidelity multi-light images, leading to dis-
crepancies in color tone and texture relative to the input. To
address this, we further adopt reference attention [43, 59],
where self-attention layers in the denoising U-Net also at-
tend to keys and values obtained from the input image. This
is represented as Attn(Q, [K,Kcond], [V,Vcond]), in which
Q,K,V are the query, key, and value tokens from the de-
noising stream, and the subscript “cond” denotes tokens
from the input image. This combined approach manages
to preserve desired textures from in the input and is crucial
for generating high-quality and realistic multi-light images.
Tuning Scheme. We build our model on Stable Diffusion
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Figure 3. Hybrid condition in multi-light diffusion. Input im-
ages are incorporated via concatenation with noise latents and en-
hanced through reference attention, where queries in the denoise
stream attend to keys and values from both streams.

v-version model [1, 40]. Let αt, σt be the controlling factors
in the diffusion process, and define ground-truth velocity as
v = αtϵ+σtx and predicted velocity as vθ(·). The training
target can be denoted as:

L = Ex,I,ϵ,t

[
∥v − vθ(zt, t, I)∥2

]
, (2)

where zt is the noisy latent of x at timestep t, and I is
the input image. To fully leverage the capacity of diffusion
model, we adopt a two-phase training scheme. Initially, we
freeze most parameters except for the first convolution layer
and all attention layers to warm up the weights. This stabi-
lizes early training, allowing for a smooth transition without
severely disrupting the pre-trained model. Afterwards, we
fine-tune the entire model at a considerably lower learning
rate, facilitating careful adaptation for multi-light genera-
tion while retaining as much prior knowledge as possible.

3.2. Large G-Buffer Model
Next, we learn a regression model f(·) to predict normals
and PBR maps with the auxiliary multi-light images.
Prediction Model. Since the input image, multi-light im-
ages, and G-buffer maps are pixel-wise aligned, we opt for a
U-Net architecture thanks to its efficiency in high-resolution
prediction. Also, U-Net provides inductive bias for learning
spatial relations, making it well-suited for our task. The
model takes channel-wise concatenated input and multi-
light images, and outputs an 8-channel G-buffer, containing
3-channel n and a maps, and 1-channel r and m maps. This
multi-light-enhanced G-buffer prediction is represented as:

B = f
(
I,
{
(xi, θi, φi) | i = 1, 2, . . . , L

})
, (3)

where each novel-light image xi is associated with the light
source poses θi and φi, which indicate spherical coordinates
of the light source relative to the object (see Fig. 4). Con-
ditioning on these poses allows f(·) to explicitly correlate
shading variations with their respective light sources, en-
hancing surface estimation.

𝑥

𝑦

𝑧

𝜑

𝜃

: Point Light Sources

Figure 4. Visualization of multi-light setup in LightProp. Camera
and point lights are positioned on a sphere around the object. θ, φ
are spherical coordinates to determine each light’s orientation rel-
ative to the object.

Training Objectives. To train the model f(·) for G-buffer
prediction, we apply loss functions to each of the G-buffer
properties. We employ a cosine similarity loss for normals,
enforcing the model to capture precise surface orientations.
To stabilize the training, we also include an MSE term as
regularization:

Lnormal =

(
1− n · n̂

∥n∥∥n̂∥

)
+ λ1∥n− n̂∥2, (4)

where n̂ and n are the predicted and ground-truth normals.
For the predicted albedo â, roughness r̂, and metallic m̂, we
simply use MSE losses as:

LPBR = ∥a− â∥2 + ∥r− r̂∥2 + ∥m− m̂∥2. (5)

The overall loss is the weighted sum of the two losses.
Augmentations. We train our prediction model using
ground-truth rendered multi-light images, but for inference,
we rely on generated images from diffusion models. In
our earlier experiments, we observed a domain gap between
the generated and rendered multi-light images in sharpness
and brightness. This gap would introduce discrepancies
between training and inference, causing degraded perfor-
mances. To bridge this gap, we apply a series of augmen-
tations to multi-light images during training, including: (a)
Random Degradation, such as resizing and grid distortion
that simulate small misalignments; (b) Random Intensity
that adjusts brightness in HSV space, simulating brightness
variations of multi-light images; (c) Random Orientation
perturbs {θi, φi} to account for potential disparities, en-
couraging f(·) to be robust to inaccurate lighting cues; and
(d) Data Mixing, where we mix generated multi-light im-
ages into the training data to further mitigate this gap.

3.3. LightProp Dataset
To train our model, we need to collect paired multi-light
images and corresponding normal and PBR material maps.
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Table 1. Quantitative comparison on surface normal estimation. We report mean and median angular errors, as well as accuracies within
different angular thresholds from 3◦ to 30◦.

Method Mean ↓ Median ↓ 3◦ ↑ 5◦ ↑ 7.5◦ ↑ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑

RGB↔X [57] 14.847 13.704 11.676 23.073 35.196 49.829 75.777 86.348
DSINE [2] 9.161 7.457 23.565 41.751 57.596 72.003 90.294 95.297
GeoWizard [16] 8.455 6.926 22.245 40.993 58.457 74.916 93.315 97.162
Marigold [25] 8.652 7.078 25.219 42.289 58.062 72.873 92.326 96.742
StableNormal [53] 8.034 6.568 21.393 43.917 63.740 78.568 93.671 96.785

Ours 6.413 4.897 38.656 56.780 70.938 82.853 95.412 98.063

Table 2. Quantitative comparison on PBR materials estimation and single-image relighting.

Method Albedo Roughness Metallic Relighting Latency
PSNR ↑ RMSE ↓ PSNR ↑ RMSE ↓ PSNR ↑ RMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Average Time ↓

RGB↔X [57] 16.26 0.176 19.21 0.134 16.65 0.199 20.78 0.8927 0.0781 15s
Yi. et al [54] 21.10 0.106 16.88 0.180 20.30 0.144 26.47 0.9316 0.0691 5s
IntrinsicAnything [8] 23.88 0.078 17.25 0.172 22.00 0.134 27.98 0.9474 0.0490 2min
DiLightNet [56] - - - - - - 22.68 0.8751 0.0981 30s
IC-Light [60] - - - - - - 20.29 0.9027 0.0638 1min

Ours 26.62 0.054 23.44 0.085 26.23 0.109 30.12 0.9601 0.0371 5s

However, capturing such pairs in the real world requires
specialized photometric equipments and controlled lighting,
which is impractical for large-scale collection, while inter-
net images typically lack access to their underlying 3D data,
making it infeasible to derive ground-truth surface proper-
ties. Therefore, we construct a synthetic dataset LightProp,
where we curate 80k objects from Objaverse [11], filtering
out those of low-quality or without PBR materials.

LightProp provides multi-light images and G-buffer
maps for every object. Each object is rendered at 5 ran-
dom views, and for each view, we simulate 5 images under
random lighting conditions, including point light, area light,
and HDR environment maps. Each view also provides a full
set of surface normal and PBR materials, along with multi-
light images rendered under known directional lighting. As
shown in Fig. 4, we position the camera and point lights on
a sphere around the object, where θ determines the vertical
position of the lights relative to the overhead direction, and
φ controls the rotation relative to the camera. In practice,
the positions of light sources are fixed during the training
of multi-light diffusion model g(·) and the inference of G-
buffer prediction model f(·), while randomized light posi-
tions are applied for training f(·) to encourage generaliza-
tion. More details on dataset construction can be found in
the appendix.

4. Experiments
We evaluate our method across various tasks. For nor-
mal estimation, we benchmark against regression-based
method DSINE [2] and diffusion-based methods GeoWiz-
ard [16], Marigold [25] and StableNormal [53]. For
PBR material prediction, we compare our method with
a data-driven method by Yi et al. [54], an optimization
method IntrinsicAnything [8], and a diffusion-based model

RGB↔X [57]. For image relighting, we use ground-
truth normal maps and predicted PBR materials from base-
lines [8, 54, 57] to render relit images, serving as re-
lighting baselines. We also compare our method with
diffusion-based image relighting models DiLightNet [56]
and IC-Light [60], using a captioning model [39] to gen-
erate prompts.

4.1. Quantitative Evaluation
We calculate metrics on a held-out subset of LightProp,
consisting of 1, 000 randomly selected, unseen objects.
Normal. Following prior works [16, 53], we report the
comparison results in mean and median angular errors, and
accuracy within various angular thresholds. Since we ob-
serve promising accuracy within the commonly used thresh-
olds from 5◦to 30◦, we further report the accuracy under
a finer threshold of 3◦. As shown in Tab. 1, our method
outperforms baselines across all metrics, particularly under
finer thresholds, clearly showing the effectiveness.
Materials and Relighting. Following previous works,
we calculate PSNR and RMSE for albedo, roughness,
and metallic maps, and evaluate relit images using PSNR,
SSIM, and LPIPS [61]. We also report the average time per
frame, calculated by measuring the total time to render 120
relit frames from a single input image and dividing by the
number of frames. As shown in Tab. 2, our method shows
a clear improvement over baselines. These results demon-
strate the effectiveness and efficiency of our approach in
predicting accurate material properties and rendering faith-
ful relighting images.

4.2. Qualitative Evaluation
We present qualitative comparison results on both the un-
seen Objaverse subset and in-the-wild images. More visual
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Figure 5. Qualitative comparison on surface normal estimation. Ground truth normals (G.T.) are provided for input images rendered from
available 3D objects (the last two rows) and are omitted for in-the-wild images (the first two rows).

Figure 6. Qualitative comparison on single-image relighting.

results are given in appendix.
Normal. As shown in Fig. 5, our method produces sharp,
coherent normal maps while preserving surface details. For
instance, in the cow case, our method accurately captures

the normal variations around the ears. In the robot example,
other methods tend to produce over-smoothed or inaccurate
normal, while ours demonstrates a clear advantage in cap-
turing complex surface geometries. Please refer to Fig. 16

6



Figure 7. Qualitative comparison on PBR material estimation. Ground truth materials (G.T.) are provided for input images rendered from
available 3D objects (the right column) and are omitted for in-the-wild images (the left column).

Table 3. Effects of condition strategies in multi-light diffusion.

PSNR ↑ SSIM ↑ LPIPS ↓

Concatenation 19.32 0.8597 0.0909
Reference Attention 19.87 0.8691 0.0829
Concatenation + Reference Attention 20.01 0.8718 0.0815

for more examples.
PBR Materials. As shown in Fig. 7, our approach gen-
erates more accurate PBR materials than baselines. Base-
line methods fail to remove highlights in their albedo maps,
while our approach produces smooth base colors regardless
of the illumination conditions of input images. Also, our
method is more robust at distinguishing metal and nonmetal
materials, while baselines are prone to reflective parts or fail
to locate the metallic regions. More examples can be found
in Figs. 17 and 18.
Image Relighting. As shown in Fig. 6, our approach gener-
ates realistic lighting effects and retains details such as Chi-
nese characters in the last example. In contrast, without un-
derlying physical properties, DiLightNet and IC-Light tend
to generate over-saturated images, while others are limited
in eliminating highlights and shadows from the input im-
age. Video comparisons are provided in our project page.
In the appendix, we provide more relighting comparisons in
Fig. 19 and more relighting results of our method in Figs. 14
and 15.

Figure 8. Visualization of different conditioning strategies in
multi-light diffusion. Concat stands for concatenation. RA stands
for reference attention.

4.3. Ablation Study

Due to the expensive training cost of the full model, we use
smaller models for the following ablation experiments.
Conditioning Strategy for Multi-Light Diffusion. We ex-

7
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Table 4. Effect of the number of multi-light images on the performance of the large G-buffer model.

Number of Albedo Roughness Metallic Normal
Light Images PSNR ↑ RMSE ↓ PSNR ↑ RMSE ↓ PSNR ↑ RMSE ↓ MAE ↓ 5◦ ↑ 7.5◦ ↑ 11.25◦ ↑ 22.5◦ ↑

0 22.22 0.082 20.99 0.104 18.56 0.136 7.563 45.846 61.425 76.948 95.488
3 23.72 0.068 23.89 0.075 20.66 0.106 4.763 68.344 80.896 89.959 97.928
6 23.82 0.068 24.19 0.072 20.64 0.106 4.275 72.777 83.997 91.730 98.312
9 23.90 0.067 24.36 0.069 20.74 0.105 4.059 74.720 85.092 92.330 98.431

Table 5. Effect of augmentation strategy on the large G-buffer model.

Albedo Roughness Metallic Normal
PSNR ↑ RMSE ↓ PSNR ↑ RMSE ↓ PSNR ↑ RMSE ↓ MAE ↓ 5◦ ↑ 7.5◦ ↑ 11.25◦ ↑ 22.5◦ ↑

w/o augmentation 21.69 0.087 20.46 0.110 16.61 0.179 7.080 52.235 67.032 80.115 94.802
w/ augmentation 22.36 0.081 21.39 0.099 18.81 0.135 6.342 55.893 70.326 82.848 96.230

Figure 9. Visualization of using different numbers of multi-light
images. We evaluate the G-Buffer prediction model with different
numbers of novel-light images (0, 3, 6, and 9) as conditions.

plore three different settings, concatenation, reference at-
tention (RA), and our hybrid approach. The quantitative
analyses are given in Tab. 3. As shown in Fig. 8, while
Concat captures correct highlights and shadows, it often re-
sults in over-saturated colors or inaccurately rendered sur-
face textures, as seen in the excessive brightness on the vase
and inconsistent color tones on the chess piece. RA, on
the other hand, fails to reflect faithful lighting effects. In
contrast, the hybrid approach yields the best qualitative and
quantitative performances.

Number of Multi-Light Images for Prediction. To exam-
ine how multi-light images affect performance, we evaluate
the large G-buffer model with varying numbers of rendered
light images (0, 3, 6, and 9). As shown in Tab. 4, the per-
formances improve sharply from 0 to 3 images by reduc-
ing ambiguity, and steadily improve with more provided
images. The same conclusion is also observed in Fig. 9,
where leveraging multi-light images yields sharper normal
and better PBR maps.

Figure 10. Visualization of the augmentation strategy.

Effects of Augmentation Strategy. We examine the im-
pact of data augmentation on enhancing the robustness and
generalization of the G-buffer prediction model. As shown
in Tab. 5 and Fig. 10, the proposed augmentation strategy
improves the model’s ability to produce consistent and ac-
curate outputs, demonstrating increased invariance to arti-
facts introduced by the multi-light diffusion model. This
augmentation effectively bridges the gap caused by noise,
color inconsistencies, and other disturbances.

5. Conclusion
In this work, we present Neural LightRig, a framework ca-
pable of estimating accurate surface normals and PBR ma-
terials from a single image. Leveraging a multi-light dif-
fusion model, we generated consistent relit images under
various directional light sources. These generated images
significantly reduce the inherent ambiguity when estimat-
ing surface properties, serving as enriched conditions for the
G-Buffer prediction model. Extensive experiments demon-

8



strate that our method achieves significant improvements in
both quality and generalizability. Future work will focus on
extending this approach to more complex scenes and inte-
grating it with 3D reconstruction systems.
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Appendix
A. Dataset Details
In the main paper, we provided an overview of the Light-
Prop dataset, designed specifically to address the chal-
lenges of learning robust multi-light image generation and
geometry-material estimation. Here, we detail the data cu-
ration and rendering configurations.

A.1. Data Curation
Objaverse [11] originally contains around 800, 000 syn-
thetic objects across various categories and styles. To en-
sure high-quality content for LightProp, we implemented a
rigorous curation process. First, we filtered out objects with
extreme thinness or unbalanced proportions, such as objects
with large surface areas but minimal thickness or depth,
which often distort lighting interactions and hinder effec-
tive learning. Additionally, we excluded objects that origi-
nated from 3D scans or those representing entire scenes, as
these typically contain irrelevant environmental details that
are less suitable for our framework. Finally, objects lacking
essential PBR material maps (albedo, roughness, and metal-
lic maps) were removed to ensure comprehensive material
data for training. This selection process resulted in a refined
subset of around 80, 000 high-quality objects for LightProp.

A.2. Rendering Setup
The LightProp dataset is created using the Cycles render-
ing engine in Blender [9], with each image generated at 128
samples per pixel and accelerated using CUDA. To intro-
duce diversity in object orientation and perspective, each
object is rendered from five distinct viewpoints: a front
view, a right view, a top view, and two random views sam-
pled on a surrounding sphere. For each viewpoint, we apply
five distinct lighting conditions, comprising a point light,
an area light, and three HDR environment maps randomly
selected from 25 high-quality maps. To set up our direc-
tional lighting, we position eight lights around the camera
and place one additional light directly at the camera’s posi-
tion. The lighting orientations are parameterized by spheri-
cal coordinates θ and φ, specifically configured as:

θi = i · π
4

for i = 0, 1, . . . , 8, (6)

φi = {1, 2, 1, 2, 1, 2, 1, 2, 0} · π
6
. (7)

This arrangement ensures diverse lighting directions to en-
hance shading and reflectance variations in multi-light im-
ages, which are essential for accurate geometry and material
estimation. In addition to the multi-light images, each ob-
ject view is paired with ground-truth G-buffer maps, includ-
ing surface normals, albedo, roughness, and metallic maps.
These G-buffers, rendered via Blender’s physically-based

pipeline, provide the necessary supervision for training in
surface normal and PBR material prediction.

B. Implementation Details
B.1. Multi-Light Diffusion
We build our multi-light diffusion model on top of Stable
Diffusion v2-1. As discussed in the main paper, we adopt a
two-phase training scheme to adapt this pre-trained model
for multi-light image generation. In the initial phase, we
tune the first convolution layer, all parameters in the self-
attention layers, and only the key and value parameters
in the cross-attention layers. This phase runs for 80, 000
steps with a peak learning rate of 1 × 10−4 and a total
batch size of 128, following a cosine annealing schedule
with 2, 000 warm-up steps. We use the AdamW optimizer
with β1 = 0.9, β2 = 0.999, and a weight decay of 0.01,
and enable bf16 mixed precision to accelerate the training.
Additionally, we apply gradient clipping with a maximum
norm of 1.0 to stabilize training and incorporate classifier-
free guidance, with a probability of dropping the condition-
ing set to 0.1. In the following phase, we further fine-tune
the full model for another 80, 000 steps at a significantly
lower peak learning rate of 5× 10−6 with the same training
particulars. Both of the two phases are trained with an in-
put image resolution of 256× 256, and a multi-light output
of 768× 768. In total, the complete training process of our
multi-light diffusion model takes approximately 2.5 days on
32 NVIDIA A100 (80G) GPUs.

B.2. Large G-Buffer Prediction Model
Architecture. Our large G-buffer prediction model takes
as input a single image with 4 channels (including alpha),
combined with multi-light images comprising 9 lighting
conditions, each with 3 channels, resulting in a total of
4+9×3 = 31 input channels. The output consists of 8 chan-
nels, representing the surface normals, albedo, roughness,
and metallic maps (3, 3, 1, and 1 channel, respectively).
The regression U-Net architecture comprises four down-
sampling blocks with progressively increasing channels of
224, 448, 672, and 896, followed by a bottleneck block
with 896 channels, and then four up-sampling blocks with
correspondingly decreasing channels of 896, 672, 448, and
224. Each block contains two residual layers with Group
Normalization (using 32 groups), and SiLU activation. At-
tention mechanisms, implemented in a pre-norm style , are
applied in all but the first down-sampling block and the
last up-sampling block, using an attention head dimension
of 8. Within each block, up-sampling and down-sampling
are performed via a convolutional layer placed after the
two residual layers. To encode the spherical coordinates
{θi, φi} associated with each lighting condition, we employ

https://huggingface.co/stabilityai/stable-diffusion-2-1

12



sinusoidal embeddings. Each scalar θ or φ is projected to
a higher dimension of dscalar = 224 and we concatenate
these projected vectors into a single 9 × 2 × 224 = 4032
dimensional vector, which is subsequently embedded by a
2-layer MLP, producing an illumination embedding with a
final dimensionality of demb = 896. This embedding is
modulated to each block in the U-Net with adaptive group
normalization. For the smaller models in our ablation study,
we use a U-Net with down-sampling blocks at 128, 256,
384, and 512 channels, mirrored in the up-sampling blocks,
along with a 512-channel bottleneck block.

Training Details. We apply weighted loss contributions
to balance Lnormal and LPBR. Specifically, we set a 4 : 1
ratio for surface normals relative to PBR materials. Ad-
ditionally, we apply a stabilization factor of λ1 = 0.25
for the MSE term in Lnormal, as outlined in the main pa-
per. Given the computational demands of high-resolution
feature maps, especially with attention layers, we employ
a two-phase training strategy, gradually transitioning from
low to high resolutions. In the initial phase, we train at
a resolution of 256 × 256 to establish core feature repre-
sentations, running for 60, 000 steps with a batch size of
128. This phase includes 1, 500 warm-up steps, a peak
learning rate of 1 × 10−4, and a weight decay of 0.01, us-
ing a cosine annealing schedule and the AdamW optimizer
with β1 = 0.9 and β2 = 0.999. Training on 32 NVIDIA
A100 (80G) GPUs, this phase completes in approximately
20 hours. Following this foundational phase, we move to
a higher resolution of 512 × 512, allowing the model to
capture finer details essential for precise geometry and ma-
terial predictions. This fine-tuning phase involves a reduced
learning rate of 2× 10−5 and runs for an additional 30, 000
steps on the same setup of 32 NVIDIA A100 (80G) GPUs,
completing in approximately 7 days. All other training pa-
rameters are kept consistent with the initial phase.

Augmentation Details. In the main paper, we introduced
the augmentations to bridge the gap between our multi-light
diffusion model and the large G-buffer prediction model.
For Random Degradation, we down-sample each multi-
light image to a lower resolution uniformly sampled from
U(128, 256) and then up-sample it back to the original res-
olution of 256. Following this, we apply grid distortion
with a perturbation strength sampled from U(0.15, 0.3) to
simulate geometrical misalignments. For Random Inten-
sity, we convert the multi-light images to HSV format and
adjust the brightness channel using an image-level scaling
factor from U(0.9, 1.3). Additionally, we apply pixel-level
noise by scaling each pixel independently with a factor sam-
pled from N (1, 0.05). The input image receives a separate
brightness adjustment factor sampled from U(0.9, 1.1). For
Random Orientation, all spherical coordinates are perturbed
by an angular gaussian noise in radians. θi receive a noise
sampled from N (0, 0.1) and are wrapped with modulus 2π.

Figure 11. Failure case.

φi are perturbed with noise from N (0, 0.02) and clamped
within [0, π

2 ]. The above three augmentations are triggered
independently with a probability of 0.6. For Data Mixing,
this augmentation is applied with a probability of 0.3. We
generate multi-light images from our diffusion model with a
classifier-free guidance scale of 2.0 over 75 inference steps.
Additionally, inspired by prior work on multi-view recon-
struction [30], we shuffle the order of the multi-light im-
ages during training with a probability of 0.5 to encour-
age robustness in learning features across varied lighting
sequences, thereby reducing dependency on any specific
lighting arrangement.

C. Limitations
While our approach demonstrates strong performance, sev-
eral limitations remain. First, for input images with extreme
highlights or shadow areas, our method struggles to fully
remove illumination effects in the predicted albedo maps,
as shown in Fig. 11. Additionally, the resolution of the
backbone multi-light diffusion model (256×256) limits the
level of detail achievable in the generated multi-light im-
ages, subsequently constraining the final normal and ma-
terial predictions. Increasing the model’s resolution could
enhance the quality of the predicted surface properties. Fi-
nally, our method is currently designed for objects rather
than full scenes, limiting its applicability in complex, multi-
object environments.

D. Additional Results
D.1. Our Results
Figs. 12 and 13 present examples of our full pipeline output,
including input images, generated multi-light images, esti-
mated surface normals, PBR materials, and relit images un-
der various environment maps. These results showcase the
robustness of our approach in generating consistent geom-
etry and material estimates and realistic relighting effects
across different lighting conditions. Additionally, Figs. 14
and 15 showcase extended single-image relighting results
of our method under an even broader range of environment
maps, further highlighting the model’s ability to generate
high-quality, adaptable relit images across diverse lighting
setups. These results illustrate the robustness in managing
various lighting conditions and further demonstrate the effi-
cacy of our approach.
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D.2. Comparison Results
In Fig. 16, Fig. 17, Fig. 18, and Fig. 19 we offer more com-
parison results for surface normal estimation, PBR mate-
rial estimation, and single-image relighting. These com-
parisons further demonstrate the advantages of our method
over baseline approaches in accurately capturing surface de-
tails, material properties, and producing realistic relit im-
ages under diverse lighting conditions.
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Figure 12. More results of our method.

15



Figure 13. More results of our method.
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Figure 14. More single-image relighting results of our method.
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Figure 15. More single-image relighting results of our method.
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Figure 16. More comparisons on surface normal estimation.
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Figure 17. More comparisons on PBR material estimation.
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Figure 18. More comparisons on PBR material estimation.
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Figure 19. More comparisons on single-image relighting.
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