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Abstract

Cross-modal alignment is crucial for multimodal repre-
sentation fusion due to the inherent heterogeneity between
modalities. While Transformer-based methods have shown
promising results in modeling inter-modal relationships,
their quadratic computational complexity limits their ap-
plicability to long-sequence or large-scale data. Although
recent Mamba-based approaches achieve linear complex-
ity, their sequential scanning mechanism poses fundamen-
tal challenges in comprehensively modeling cross-modal re-
lationships. To address this limitation, we propose Align-
Mamba, an efficient and effective method for multimodal
fusion. Specifically, grounded in Optimal Transport, we
introduce a local cross-modal alignment module that ex-
plicitly learns token-level correspondences between differ-
ent modalities. Moreover, we propose a global cross-modal
alignment loss based on Maximum Mean Discrepancy to
implicitly enforce the consistency between different modal
distributions. Finally, the unimodal representations after
local and global alignment are passed to the Mamba back-
bone for further cross-modal interaction and multimodal fu-
sion. Extensive experiments on complete and incomplete
multimodal fusion tasks demonstrate the effectiveness and
efficiency of the proposed method. For instance, on the
CMU-MOSI dataset, AlignMamba improves classification
accuracy by 0.9%, reduces GPU memory usage by 20.3%,
and decreases inference time by 83.3%.

1. Introduction

In recent years, multimodal representation fusion has
emerged as a critical technology for integrating and under-
standing information across different modalities (e.g., au-
dio, video, language). This capability is fundamental to a
wide range of applications such as visual-language under-
standing [41] and audio-visual analysis [13, 40]. However,
due to the inherent heterogeneity between modalities - each

with its distinct statistical properties and feature distribu-
tions - achieving effective cross-modal alignment and fu-
sion remains a significant challenge.

Traditional approaches to this challenge have primarily
relied on Transformer-based [31] architectures, which can
be broadly categorized into two paradigms. Single-stream
methods (e.g., VisualBERT [15], ViLT [11], LLaVA [21])
concatenate features from different modalities into a uni-
fied sequence and process them through a shared Trans-
former layer. In contrast, multi-stream approaches (e.g.,
LXMERT [29], ViLBERT [23], MulT [30], CMA [44]) em-
ploy separate encoders for each modality with cross-modal
Transformers to facilitate information exchange. While
these methods have demonstrated promising results in cap-
turing dynamic cross-modal interactions, they suffer from a
fundamental limitation: the quadratic computational com-
plexity of attention mechanisms makes them inefficient for
processing long-sequence or large-scale data common in
real-world multimodal applications.

Recent advances in sequence modeling have introduced
the Mamba [3] architecture, based on State Space Models
(SSMs) [4, 5], which achieves linear computational com-
plexity while maintaining strong modeling capabilities. By
incorporating selection mechanisms and hardware-aware
parallel algorithms into SSMs, Mamba effectively cap-
tures long-range dependencies without the computational
burden of attention mechanisms. This breakthrough has
sparked considerable interest in adapting Mamba for mul-
timodal fusion tasks, with approaches ranging from direct
feature concatenation (e.g., VL-Mamba [26], Cobra [42],
RoboMamba [22]) to multi-stream architectures (e.g., Pan-
Mamba [8], Fusion-Mamba [2], MambaDFuse [17]). How-
ever, our analysis reveals a critical limitation. As shown
in Fig. 1, Mamba’s sequential scanning mechanism, while
computationally efficient, struggles to capture comprehen-
sive cross-modal relationships, particularly with unscanned
tokens. This inherent limitation leads to suboptimal align-
ment between modalities and consequently affects the qual-
ity of learned multimodal fusion representations.
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Figure 1. Transformer leverages attention mechanisms to
model relationships across different modalities (top left), whereas
Mamba struggles to achieve this due to its sequential scanning
mechanism (top right). In contrast, the proposed AlignMamba uti-
lizes both local (OT-based) and global (MMD-based) cross-modal
alignment information to achieve efficient and effective multi-
modal fusion (bottom).

To address these issues, we propose AlignMamba, which
integrates local and global cross-modal alignment informa-
tion into Mamba for efficient and effective multimodal fu-
sion. Specifically, we introduce a local alignment module
based on Optimal Transport (OT), which learns a transport
plan to align features across different modalities by mini-
mizing the cost of feature transportation. While local align-
ment captures token-level cross-modal relationships, it does
not account for distributional differences between modal-
ities. Therefore, we also propose a global alignment loss
based on Maximum Mean Discrepancy (MMD). Leverag-
ing the theoretical advantages of reproducing kernel Hilbert
space, MMD maps the feature distributions of different
modalities into a high-dimensional space and achieves im-
plicit alignment by minimizing their distributional differ-
ences. After local and global cross-modal alignment, all
unimodal features are combined and fed into the Mamba
backbone for further multimodal fusion. This dual align-
ment strategy ensures that Mamba can exploit both local
and global relationships between modalities, thereby learn-
ing more comprehensive multimodal representations.

In summary, the contributions of this paper are threefold:
• We observe the limitation of directly applying Mamba to

multimodal fusion tasks, which ignores more comprehen-
sive cross-modal alignment information, and propose the
AlignMamba framework to achieve efficient and effective
multimodal fusion.

• We introduce an OT-based local alignment module for
explicit learning of token-level correspondences, comple-
mented by an MMD-based global alignment loss for im-
plicit distribution alignment. These two types of align-
ment information complement each other, achieving com-
prehensive cross-modal alignment.

• Extensive experiments on both complete and incomplete
multimodal fusion tasks demonstrate that AlignMamba
achieves state-of-the-art results in terms of both effective-
ness and efficiency.

2. Related work

2.1. Transformer-based Multimodal Fusion

Transformer [31], with its powerful modeling capabilities,
has become the cornerstone architecture in modern neu-
ral networks. Existing multimodal fusion methods mainly
rely on Transformers to model relationships between differ-
ent modalities and learn multimodal fusion representations.
These approaches can be categorized into two main types:
multi-stream and single-stream methods.

Multi-stream methods employ cross-modal Transform-
ers to model interactions between any two modalities.
For vision-language pre-training tasks, models like ViL-
BERT [23] and LXMERT [29] utilize two co-attention
Transformer layers to model bidirectional relationships be-
tween visual and textual modalities. For audio-visual-
textual trimodal fusion tasks, MulT [30] leverages cross-
modal Transformers to model pairwise modal interac-
tions, and then concatenate all bimodal fusion representa-
tions to obtain trimodal fusion representations. Similarly,
CMA [30], based on cross-modal attention mechanisms,
was proposed to fuse features from three modalities. More
recently, BLIP-2 [14] introduced Q-Former, a lightweight
querying Transformer architecture, to align vision-language
modalities and learn multimodal fusion representations.

Single-stream methods adopt a more straightforward
strategy by concatenating features from different modali-
ties and feeding them into a Transformer encoder for cross-
modal interaction and multimodal fusion. For instance,
in vision-language pre-training tasks, VisualBERT [15] ex-
tracts features from key regions using object detectors and
concatenates these region feature sequences with text to-
ken embeddings before feeding them into a Transformer.
In contrast, ViLT [11] replaces region feature sequences
with image patch embedding sequences, discarding the ob-
ject detection backbone and improving efficiency. Recent
multimodal pre-training models, such as LLaVA [21], have
adopted similar approaches to model cross-modal corre-
spondences and learn multimodal fusion representations for
downstream tasks.

Existing methods achieve cross-modal interaction and
fusion through cross-attention or self-attention mecha-
nisms, learning comprehensive and effective multimodal fu-
sion representations. However, the quadratic time complex-
ity of Transformers limits their efficiency when processing
large-scale or long-sequence data. This limitation necessi-
tates the development of novel multimodal fusion methods
that balance effectiveness and efficiency.
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2.2. Mamba-based Multimodal Fusion

As a novel architectural paradigm, Mamba [3] incorporates
selection mechanisms and hardware-aware parallel algo-
rithms into SSMs [4, 5], achieving efficient and effective
sequence modeling in the language domain. Inspired by its
success, recent studies have explored adapting Mamba for
multimodal fusion tasks. For instance, Pan-mamba [8] and
Fusion-mamba [2] incorporate features from other modal-
ities as inputs to unimodal Mamba to enable cross-modal
interaction and fusion. Similarly, MambaDFuse [17] and
MTMamba [19] utilize multimodal representations as in-
puts to unimodal Mamba for cross-modal interaction and
fusion. In contrast, some approaches adopt a simpler strat-
egy: VL-Mamba [26] and Cobra [42], for example, con-
catenate visual and textual representation sequences before
feeding them into Mamba for sequence modeling and mul-
timodal fusion.

While these Mamba-based approaches demonstrate
significant computational advantages compared to
Transformer-based multimodal fusion methods, they
face inherent limitations due to Mamba’s sequential scan-
ning mechanism. This mechanism makes it challenging to
effectively learn cross-modal correspondences, particularly
with unscanned tokens. The resulting loss in cross-modal
alignment information may constrain the effectiveness of
learned multimodal fusion representations. Therefore, how
to effectively leverage cross-modal relationships within
the Mamba framework to learn more comprehensive mul-
timodal fusion representations remains an open research
challenge.

3. Method

3.1. Overview

Fig. 2 presents the framework of our proposed Align-
Mamba. Using audio-visual-language trimodal data as a
case study, the framework first processes raw signals from
each modality through modality-specific encoders to gen-
erate corresponding unimodal embedding sequences Xa,
Xv , and Xl. The framework then employs two comple-
mentary alignment mechanisms: an OT-based local align-
ment module that captures token-level correspondences,
and an MMD-based global alignment loss that ensures
distribution-level consistency. These mechanisms yield
aligned embedding sequences X̃a and X̃v (illustrated here
by aligning audio and visual modalities to the language
modality as the anchor). The aligned unimodal embeddings,
which now incorporate cross-modal correspondence infor-
mation, are subsequently processed by the Mamba back-
bone for multimodal fusion. The following sections provide
a detailed description of each component.

3.2. OT-based Local Cross-modal Alignment
Optimal Transport provides a principled framework for
comparing and aligning probability distributions by finding
the optimal way to transform one distribution into another
while minimizing the transportation cost [32]. In our multi-
modal alignment context, OT offers a natural way to estab-
lish token-level correspondences between different modali-
ties by treating feature sequences as discrete distributions.

Given the unimodal feature sequences Xa ∈ RTa×d,
Xv ∈ RTv×d, and Xl ∈ RTl×d from audio, video, and
language modalities respectively, where Ta, Tv , and Tl de-
note the sequence lengths of different modalities and d is
the feature dimension, we aim to learn the transport ma-
trix M that capture fine-grained correspondences between
different modalities. Take video-to-language alignment as
an example, the classical optimal transport problem can be
formulated as follows:

min
Tv2l

Tv∑
i=1

Tl∑
j=1

Mv2l(i, j)Cv2l(i, j). (1)

The optimization is constrained by:
∑Tl

j=1 Mv2l(i, j) =
1
Tv

, ∀i ∈ [1, Tv]∑Tv

i=1 Mv2l(i, j) =
1
Tl
, ∀j ∈ [1, Tl]

Mv2l(i, j) ≥ 0, ∀i, j
(2)

where Cv2l ∈ RTv×Tl is the cost matrix. Given that the
cosine distance emphasizes angular relationships between
feature vectors while providing numerical stability through
its bounded range, we use cosine distance as the cost matrix:

Cv2l(i, j) = 1−
Xi

v ·X
j
l

||Xi
v||2||X

j
l ||2

. (3)

However, solving this OT problem is extremely computa-
tionally expensive. Following [12], we adopt a relaxed ver-
sion by removing the incoming sum constraint:{∑Tl

j=1 Mv2l(i, j) =
1
Tv

, ∀i ∈ [1, Tv]

Mv2l(i, j) ≥ 0, ∀i, j
(4)

This relaxed formulation allows each textual feature to be
matched with multiple video features without constraining
the total incoming flow, significantly reducing the compu-
tational complexity while maintaining the ability to capture
meaningful cross-modal correspondences. The correspond-
ing solution is defined as:

Mv2l(i, j) =

{
1
Tv

, j = argminj Cv2l(i, j),

0, j ̸= argminj Cv2l(i, j).
(5)

Similarly, we compute the transport matrix Ma2l for audio-
to-language alignment. Finally, the aligned video and audio
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Figure 2. AlignMamba enhances multimodal Mamba by incorporating token-level alignment and distribution-level alignment, enabling
more effective multimodal fusion.

features can then be obtained through:{
X̃v = M⊤

v2lXv ∈ RTl×d,

X̃a = M⊤
a2lXa ∈ RTl×d.

(6)

This relaxed OT-based alignment process provides an
efficient way to capture fine-grained cross-modal corre-
spondences while maintaining computational tractability.
The resulting transport matrices provide interpretable align-
ment information between different modalities. However,
while this token-level alignment effectively captures local
correspondences, ensuring global distribution-level consis-
tency across modalities requires additional consideration,
which we address through our MMD-based global align-
ment mechanism in the following section.

3.3. MMD-based Global Cross-modal Alignment
To ensure distribution-level consistency across modalities,
we employ Maximum Mean Discrepancy as the global
alignment metric. MMD measures the statistical discrep-
ancy between different modalities in a high-dimensional

Reproducing Kernel Hilbert Space (RKHS) by comparing
all orders of their statistics. For two feature sequences X
and Y , the squared MMD distance is defined as:

MMD2(X,Y ) =

∥∥∥∥∥∥ 1

T

T∑
i=1

ϕ(xi)−
1

T

T∑
j=1

ϕ(yj)

∥∥∥∥∥∥
2

H

, (7)

where ϕ(·) is a feature mapping to a RKHS H. Using the
kernel trick, this can be computed as:

MMD2(X,Y ) =
1

T 2

T∑
i=1

T∑
i′=1

k(xi, xi′) +
1

T 2

T∑
j=1

T∑
j′=1

k(yj , yj′)

− 2

T 2

T∑
i=1

T∑
j=1

k(xi, yj),

(8)
where k(·, ·) is a positive definite kernel function. In our
implementation, we adopt the Gaussian kernel:

k(x, y) = exp(−∥x− y∥22
2σ2

), (9)
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where σ is the kernel bandwidth parameter.
For the aligned audio features X̃a, the aligned video fea-

tures X̃v , and the language features Xl, the global align-
ment loss is defined as the sum of MMD distances between
each pair of modalities:

Lalign = MMD2(X̃v, Xl) + MMD2(X̃a, Xl). (10)

By minimizing this loss during training, we encourage
the feature distributions of different modalities to be aligned
in the RKHS. While OT establishes token-level correspon-
dences, MMD ensures the consistency of overall feature
distributions, providing complementary alignment signals
at different granularities. This dual-alignment strategy facil-
itates more effective multimodal fusion in subsequent pro-
cessing stages.

3.4. Mamba-based Fusion and Optimization
Mamba-based Multimodal Fusion. Following the local
and global alignment processes, we employ Mamba to fa-
cilitate efficient multimodal fusion while maintaining its in-
herent linear computational complexity. Unlike traditional
Transformer-based methods that process all tokens simul-
taneously through self-attention mechanisms, our approach
implements a time-priority scanning strategy that preserves
Mamba’s sequential nature while enabling effective cross-
modal interactions. Given the aligned audio features X̃a,
the aligned video features X̃v , and the language features Xl,
we construct a unified multimodal feature sequence Xmm

by interleaving features from different modalities at each
timestep:

Xmm = [X̃1
a , X̃

1
v , X

1
l , X̃

2
a , X̃

2
v , X

2
l , ..., X̃

T
a , X̃

T
v , X

T
l ],
(11)

where the superscript denotes the temporal index. This
temporal-priority organization ensures that features from
different modalities at the same timestep are processed
sequentially, allowing the selective scan mechanism of
Mamba to effectively capture both intra- and inter-modal
dependencies. The fused representations are obtained
by processing the constructed sequence through multiple
Mamba layers.
Training Objective. The framework is optimized end-to-
end using a composite loss function that combines the task-
specific objective with the alignment constraints:

L = Ltask + λLalign, (12)

where Ltask is determined by the downstream task (e.g.,
cross-entropy loss for classification or mean squared error
for regression), Lalign is the MMD-based alignment loss,
and λ is a hyperparameter that balances the two objectives.
During training, minimizing Ltask drives the model to learn
task-relevant multimodal representations, while Lalign en-
sures consistent feature distributions across modalities.

4. Experiment

We evaluate our proposed method on two distinct multi-
modal fusion scenarios: complete multimodal fusion and
incomplete multimodal fusion. In the complete fusion set-
ting, all modalities are available during both training and
inference, which tests the model’s ability to effectively in-
tegrate complementary information across modalities. The
incomplete fusion scenario, where certain modalities may
be missing during inference, presents a more challenging
yet practical setting that evaluates the model’s robustness
and adaptability to partial observations. Through extensive
experiments on these two scenarios, we demonstrate the
effectiveness of our approach in both ideal conditions and
more challenging practical situations.

4.1. Datasets and Evaluation Metrics
We conduct experiments on two multimodal representation
fusion benchmarks: CMU-MOSI [39] and CMU-MOSEI
[40]. Both datasets consist of video segments collected
from online platforms, containing visual (facial expres-
sions), acoustic (voice), and textual (transcribed speech)
modalities. Compared to CMU-MOSI, CMU-MOSEI ex-
hibits greater diversity in terms of speakers, topics, and
recording conditions. Each segment in both datasets is an-
notated with a sentiment score ranging from -3 (highly neg-
ative) to +3 (highly positive). These scores are binarized
into positive and negative sentiments for classification. To
evaluate the effectiveness of our method, we adopt the fol-
lowing metrics based on previous works [18, 34]: binary
accuracy and binary F1 score.

4.2. Comparison with SoTA methods
4.2.1. Results on Complete Multimodal Fusion Tasks
Table 2 presents a comprehensive comparison between our
approach and various state-of-the-art methods on the com-
plete multimodal representation fusion task, which can be
categorized into three main groups: (1) LSTM methods, in-
cluding ICCN [28], MISA [7], and MMIM [6]; (2) Cross-
modal Transformer methods: MulT [30], Self-MM [38],
and DMD [16]; (3) Contrastive learning methods: HyCon
[24], Confede [36], and MTMD [20].

On one hand, AlignMamba additionally incorporates
token-level alignment to enhance multimodal fusion com-
pared to contrastive learning approaches. On the other
hand, AlignMamba’s advantage over cross-modal Trans-
former methods lies in its consideration of distributional
alignment relationships. Consequently, AlignMamba at-
tains the best performance on all metrics in both datasets.
For example, on the CMU-MOSI dataset, AlignMamba
achieves a binary classification accuracy of 86.9%, repre-
senting a 0.9% improvement over previous methods. These
results can be ascribed to AlignMamba’s capacity to con-
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Dataset Missing DCCA [1] DCCAE [33] MCTN [25] MMIN [43] GCNet [18] IMDer [34] AlignMamba

MOSI

10% 72.1 / 72.2 74.5 / 74.7 78.4 / 78.5 81.8 / 81.8 82.3 / 82.3 84.9 / 84.8 85.7 / 85.6
20% 69.3 / 69.1 71.8 / 71.9 75.6 / 75.7 79.0 / 79.1 79.4 / 79.5 83.5 / 83.4 84.3 / 84.1
30% 65.4 / 65.2 67.0 / 66.7 71.3 / 71.2 76.1 / 76.2 77.2 / 77.2 81.2 / 81.0 82.2 / 82.2
40% 62.8 / 62.0 63.6 / 62.8 68.0 / 67.6 71.7 / 71.6 74.3 / 74.4 78.6 / 78.5 80.0 / 79.6
50% 60.9 / 59.9 62.0 / 61.3 65.4 / 64.8 67.2 / 66.5 70.0 / 69.8 76.2 / 75.9 77.6 / 77.3
60% 58.6 / 57.3 59.6 / 58.5 63.8 / 62.5 64.9 / 64.0 67.7 / 66.7 74.7 / 74.0 75.8 / 75.1
70% 57.4 / 56.0 58.1 / 57.4 61.2 / 59.0 62.8 / 61.0 65.7 / 65.4 71.9 / 71.2 73.8 / 73.2
Avg. 63.8 / 63.1 65.2 / 64.8 69.1 / 68.5 71.9 / 71.5 73.8 / 73.6 78.7 / 78.4 79.9 / 79.6
∆ 14.7 / 16.2 16.4 / 17.3 17.2 / 19.5 19.0 / 20.8 16.6 / 16.9 13.0 / 13.6 11.9 / 12.4

MOSEI

10% 77.4 / 77.3 78.4 / 78.3 81.8 / 81.6 81.9 / 81.3 82.3 / 82.1 84.8 / 84.6 85.4 / 85.4
20% 73.8 / 74.0 75.5 / 75.4 79.0 / 78.7 79.8 / 78.8 80.3 / 79.9 82.7 / 82.4 83.6 / 83.3
30% 71.1 / 71.2 72.3 / 72.2 76.9 / 76.2 77.2 / 75.5 77.5 / 76.8 81.3 / 80.7 82.5 / 81.0
40% 69.5 / 69.4 70.3 / 70.0 74.3 / 74.1 75.2 / 72.6 76.0 / 74.9 79.3 / 78.1 81.7 / 80.5
50% 67.5 / 65.4 69.2 / 66.4 73.6 / 72.6 73.9 / 70.7 74.9 / 73.2 79.0 / 77.4 80.1 / 78.7
60% 66.2 / 63.1 67.6 / 63.2 73.2 / 71.1 73.2 / 70.3 74.1 / 72.1 78.0 / 75.5 79.4 / 78.2
70% 65.6 / 61.0 66.6 / 62.6 72.7 / 70.5 73.1 / 69.5 73.2 / 70.4 77.3 / 74.6 78.8 / 76.9
Avg. 70.2 / 68.8 71.4 / 69.7 75.9 / 75.0 76.3 / 74.1 76.9 / 75.6 80.3 / 79.0 81.6 / 80.6
∆ 11.8 / 16.3 11.8 / 15.7 9.1 / 11.1 8.8 / 11.8 9.1 / 11.7 7.5 / 10.0 6.6 / 8.5

Table 1. Performance comparison on CMU-MOSI and CMU-MOSEI datasets. Results are reported as Accuracy / F1 (%). ∆: performance
drop from 10% to 70% missing rate (lower is better).

Method CMU-MOSI CMU-MOSEI

ICCN [28] 83.0 / 83.0 84.2 / 84.2
MISA [7] 83.4 / 83.6 85.5 / 85.3
MulT [30] 84.1 / 83.9 82.5 / 82.3

MAG-BERT [27] 84.3 / 84.6 84.8 / 84.7
CM-BERT [37] 84.5 / 84.5 83.6 / 83.6

ULGM [9] 84.5 / 84.5 85.0 / 85.1
FDMER [35] 84.6 / 84.7 86.1 / 85.8
Self-MM [38] 84.8 / 84.9 85.0 / 84.9

MMIM [6] 85.1 / 85.0 85.1 / 85.0
HyCon [24] 85.2 / 85.1 85.4 / 85.6
Confede [36] 85.5 / 85.5 85.8 / 85.8
AOBERT [10] 85.6 / 86.4 86.2 / 85.9

DMD [16] 85.8 / 85.8 86.0 / 86.1
MTMD [20] 86.0 / 86.0 86.1 / 85.9

AlignMamba 86.9 / 86.9 86.6 / 86.5

Table 2. Performance comparison on CMU-MOSI and CMU-
MOSEI datasets. Results are reported as Accuracy / F1 (%).

duct extensive cross-modal alignment by leveraging its lo-
cal alignment module and global alignment loss, thereby
adeptly exploiting cross-modal correlations across differ-
ent granularities and enabling the learning of more effective
multimodal fusion representations.

4.2.2. Results on Incomplete Multimodal Fusion Tasks

Table 1 presents experimental results on incomplete mul-
timodal representation fusion tasks. We compare Align-
Mamba with various state-of-the-art methods, which can
be categorized into two main groups: (1) modality recov-
ery approaches, including MCTN [25], MMIN [43], GCNet
[18], and IMDer [34], which attempt to reconstruct missing
modalities from available ones; and (2) non-recovery ap-
proaches, such as DCCA [1] and DCCAE [33], which di-
rectly learn from available modalities.

The results demonstrate that AlignMamba consistently
outperforms existing methods across different missing
rates, achieving an average accuracy of 79.9% on the CMU-
MOSI dataset, a 1.2% improvement over previous methods.
More importantly, AlignMamba demonstrates stronger ro-
bustness to increasing modality missing rates. For instance,
on the CMU-MOSI dataset, while MMIN and IMDer ex-
perience significant performance degradation with accu-
racy drops of 19.0% and 13.0% respectively, AlignMamba
shows better resilience with only an 11.9% decrease in bi-
nary classification accuracy.

In conclusion, these improvements on both complete and
incomplete multimodal fusion tasks can be attributed to
the proposed dual alignment strategy: the local token-level
alignment and global distribution-level alignment mecha-
nisms work together to capture comprehensive cross-modal
correspondences. This dual alignment strategy, combined
with Mamba’s efficient sequence modeling capabilities, not
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only enables learning more comprehensive and accurate
multimodal fusion representations in complete multimodal
scenarios, but also improves the robustness of learned rep-
resentations in incomplete multimodal settings.

4.3. Efficiency Analysis
We conduct comprehensive efficiency analysis for Align-
Mamba and compare them against both single-stream and
multi-stream Transformer methods. Our evaluation metrics
consist of GPU memory usage, inference time, and com-
putational complexity. For a fair comparison, we specifi-
cally focus on the cross-modal interaction and fusion com-
ponents, excluding the computational costs of unimodal en-
coders. All experiments are performed under identical con-
ditions.

4.3.1. GPU Memory Usage
First, we report the GPU memory usage of each method
with respect to varying input sequence lengths in Fig. 3.
We exclude multi-stream Transformers on the 12.8k-token
setting as they encounter an out-of-memory error. Align-
Mamba consistently achieves the best trade-off between
sequence length and memory usage across all settings,
surpassing other Transformer-based approaches by a non-
trivial margin. For instance, when processing 6.4k tokens,
AlignMamba requires only 8.53 GB of memory, achieving
20.3% and 58.0% memory reduction compared to single-
stream (10.7 GB) and multi-stream (20.3 GB) Transform-
ers, respectively. This significant advantage in memory con-
sumption is particularly valuable for processing longer se-
quences and deploying models on resource-constrained de-
vices.

Figure 3. GPU memory usage comparison with varying lengths.

4.3.2. Inference Time
Next, we report the inference time of each method with re-
spect to varying input sequence lengths in Fig. 4. To en-
sure fairness, we aggregate the running time of 50 infer-
ence passes for each model. AlignMamba again demon-
strates consistent and substantial speed advantages over
Transformer-based approaches across all settings. For in-
stance, when processing 6.4k tokens, AlignMamba takes
only 6.05 seconds, achieving 83.3% and 87.6% reduction

in inference time compared to single-stream (36.13s) and
multi-stream (48.61s) Transformers, respectively.

Figure 4. Inference time comparison with varying lengths.

4.3.3. Computational Complexity
Finally, we analyze the FLOPs required by each method
to quantify their computational efficiency. Without loss of
generality, we fix the input sequence length to 1024 for
each model. AlignMamba demonstrates superior efficiency
with only 46.7G FLOPs, compared to 101.6G FLOPs for
single-stream Transformer and 203.2G FLOPs for multi-
stream Transformer. This represents a reduction of more
than 54% compared to single-stream and 77% compared to
multi-stream approaches, highlighting AlignMamba’s com-
putational advantages in cross-modal alignment and multi-
modal fusion tasks. This also justifies the lower memory
consumption and swift inference speed as presented in the
previous sections.

4.4. Ablation study
We conduct comprehensive ablation studies from three as-
pects to evaluate our proposed method, as shown in Table
3.
Component analysis. First, we evaluate the effectiveness
of the OT-based local alignment module and MMD-based
global alignment loss. Removing either component led to
performance degradation across both datasets. For instance,
on the CMU-MOSI dataset, accuracy dropped by 2.3% and
1.1% respectively. Notably, the OT-based alignment mod-
ule demonstrated superior performance compared to the
MMD-based alignment loss, likely because OT-based align-
ment provides explicit alignment plans while MMD-based
alignment only imposes implicit alignment constraints.
Mamba-based fusion. Furthermore, we ablate Align-
Mamba with regular single-stream [42] and multi-stream
Mamba-based fusion methods [2] to show the effective-
ness of our method in terms of multimodal fusion. Results
demonstrate reduced performances in these two Mamba-
based methods, suggesting their lack of explicit consider-
ation of inter-modal correspondences, which makes it diffi-
cult to learn comprehensive cross-modal relationships. This
shows that naive Mamba architecture alone does not suffice
in effective multimodal fusion and highlights both the lim-
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Figure 5. The learned optimal transport plan. We only show the transport plan between video and language modalities for brevity.

itations of Mamba’s original scanning mechanism and the
necessity of our proposed cross-modal alignment.
Modality ablations. Lastly, we conduct modality ablation
experiments by removing one modality at a time. When the
text modality is removed, we only align the audio modal-
ity with the video modality. This results in significant per-
formance degradation, likely due to the strong correlation
between language and emotions. In contrast, removing the
audio modality results in a smaller performance drop, pos-
sibly due to the sizable presence of irrelevant information in
the audio modality such as background noise, reducing its
impact on the overall performance.

CMU-MOSI CMU-MOSEI

AlignMamba 86.9 / 86.9 86.6 / 86.5

Alignment

w/o Local 84.6 / 84.4 84.1 / 84.0
w/o Global 85.8 / 85.7 85.7 / 85.5

Fusion

Single-stream 82.3 / 82.1 81.8 / 81.4
Multi-stream 83.7 / 83.5 83.5 / 83.2

Modality

w/o Audio 84.4 / 84.6 83.9 / 83.5
w/o Video 83.7 / 83.8 83.3 / 82.8

w/o Language 65.3 / 63.4 64.6 / 62.2

Table 3. Ablation studies on CMU-MOSI and CMU-MOSEI
datasets. Results are reported as Accuracy / F1 (%).

4.5. Further Analysis
4.5.1. Cross-modal Alignment
To quantitatively assess our dual alignment strategy, we
measure the A-distance between modality pairs in Ta-
ble 4. The A-distance ∈ [0, 2] is a common metric for
domain discrepancy, with higher values indicating greater
modality differences. Aal and Avl represents the audio-
language and video-language distances respectively. The
results reveal significant and consistent reductions in inter-

modal distances through our dual alignment strategy in
both CMU-MOSI and CMU-MOSEI. These improvements
demonstrate the effectiveness of our strategy in bridging the
modality gap by learning meaningful cross-modal correla-
tions, leading to more robust multimodal fusion representa-
tions.

CMU-MOSI CMU-MOSEI
Aal Avl Aal Avl

w/ Dual-align 1.59 1.49 1.61 1.53
w/o Dual-align 1.68 1.57 1.72 1.65

Table 4. A-distance between different modalities.

4.5.2. Optimal Transport Plan
Here, we qualitatively present the learned optimal trans-
port plan. Figure 5 illustrates an example from the CMU-
MOSI dataset. Notice that modalities exhibit temporal mis-
alignment: the sentiment correspondence between different
modalities may appear at different timesteps, which poses
a challenge for multimodal representation fusion. For in-
stance, the visual modality exhibits negative expressions at
the beginning, while the textual modality introduces neg-
ative words toward the end. The original Mamba model
struggles to explicitly learn these correspondences due to its
sequential scanning mechanisms. In contrast, our proposed
method leverages optimal transport to explicitly transform
and align features in different temporal stages across modal-
ities, reducing the modality gap and improving the effec-
tiveness of multimodal fusion.

5. Conclusion
In this paper, we proposed AlignMamba, an efficient
and effective method for multimodal representation
fusion. By integrating OT-based local alignment and
MMD-based global alignment, our method captures com-
prehensive cross-modal relationships while maintaining
lower computational complexity. Extensive experiments
on both complete and incomplete multimodal fusion tasks
demonstrate that AlignMamba achieves state-of-the-art per-
formance with significantly reduced computational costs.
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