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Abstract

Multimodal Sentiment Analysis (MSA) leverages heteroge-
neous modalities, such as language, vision, and audio, to en-
hance the understanding of human sentiment. While existing
models often focus on extracting shared information across
modalities or directly fusing heterogeneous modalities, such
approaches can introduce redundancy and conflicts due to
equal treatment of all modalities and the mutual transfer of
information between modality pairs. To address these issues,
we propose a Disentangled-Language-Focused (DLF) mul-
timodal representation learning framework, which incorpo-
rates a feature disentanglement module to separate modality-
shared and modality-specific information. To further reduce
redundancy and enhance language-targeted features, four ge-
ometric measures are introduced to refine the disentangle-
ment process. A Language-Focused Attractor (LFA) is further
developed to strengthen language representation by leverag-
ing complementary modality-specific information through a
language-guided cross-attention mechanism. The framework
also employs hierarchical predictions to improve overall ac-
curacy. Extensive experiments on two popular MSA datasets,
CMU-MOSI and CMU-MOSEI, demonstrate the significant
performance gains achieved by the proposed DLF frame-
work. Comprehensive ablation studies further validate the ef-
fectiveness of the feature disentanglement module, language-
focused attractor, and hierarchical predictions. Our code is
available at https://github.com/pwang322/DLF.

Introduction
With the rapid development of social media, multimodal in-
teraction has become increasingly popular, which attracts
many researchers to transfer uni-modal learning to multi-
modal learning tasks (Awal et al. 2024; Guan et al. 2024;
Xu, Zhu, and Clifton 2023). One of the most significant
subfields is multimodal sentiment analysis (MSA) (Geetha
et al. 2024; Yang et al. 2022a). MSA aims to perceive hu-
man sentiment through multiple heterogeneous modalities,
such as language, vision, and audio, playing a crucial role in
many applications including cognitive psychology, scenario
understanding, and mental health (Ali and Hughes 2023; Ez-
zameli and Mahersia 2023; Yang et al. 2023a). Compared
with unimodal solutions, MSA often presents a more ro-
bust performance by leveraging complementary information
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Figure 1: Task pipeline of the Multimodal Sentiment Analy-
sis, and varied performance of different modalities.

from different modalities. How to effectively learn essential
representations without redundant and conflicting informa-
tion from multiple heterogeneous modalities, however, re-
mains an open question in the academic field, especially in
multimodal learning communities.

In recent years, researchers have shown an increased in-
terest in MSA. Many multimodal models have been pro-
posed to facilitate MSA, and they can be categorized into
two groups: representation learning-oriented methods (Guo
et al. 2022; Hazarika, Zimmermann, and Poria 2020; Sun
et al. 2023; Yang et al. 2022c) and multimodal fusion-
oriented methods (Zhang et al. 2023; Huang et al. 2020;
Yang et al. 2022b; Tsai et al. 2019; Lv et al. 2021; Rah-
man et al. 2020). The former primarily aims to acquire an
advanced semantic understanding of various modalities en-
riched with diverse clues of human sentiments, resulting in
more powerful human sentiment encoders. Conversely, the
latter emphasizes designing sophisticated fusion strategies
at various levels, including feature-level, decision-level, and
model-level fusion, to derive unified representations from
multimodal data. It is worth noting that the fundamental as-
pect of MSA lies in learning and integrating multimodal rep-
resentations, where the goal is to accurately process and in-
tegrate various modal inputs to discern sentiments from the
underlying data. Although current leading methods in MSA
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(Hazarika, Zimmermann, and Poria 2020; Tsai et al. 2019;
Zadeh et al. 2017; Yu et al. 2021) have shown considerable
progress, the inherent disparities across diverse modalities
continue to present challenges, complicating the develop-
ment of stable and effective multimodal representation. For
MSA, as shown in Figure 1, existing works and our ablation
study (see Table 2) have shown that language, vision, and
audio sources contribute differently to the overall prediction
performance (Pham et al. 2019; Tsai et al. 2019; Kim and
Park 2023; Li et al. 2024a; Lei et al. 2023), which indicates
the big distribution gap among different modalities hinders
the final performance.

To mitigate the distribution gap among heterogeneous
modalities, as shown in Figure 1, knowledge distillation-
based methods, such as cross-modal and graph distillation,
are introduced to transfer reliable information between dif-
ferent modalities (Gupta, Hoffman, and Malik 2016; Guo
et al. 2020; Aslam et al. 2023; Kim and Kang 2022; Haz-
arika, Zimmermann, and Poria 2020; Li, Wang, and Cui
2023; Tsai et al. 2019). Cross-modal distillation typically
leverages the stronger Language modality to teach weaker
modalities (Vision and Audio), while graph distillation com-
pletely performs bidirectional information transfer between
all modality pairs. However, it is important to note that con-
ventional distillation is inherently asymmetric—it is effec-
tive when transferring information from one modality to an-
other, but the benefits of the reciprocal process are unclear.
This asymmetry can lead to redundant or even conflicting
information in cross-modal and graph distillation, ultimately
limiting overall performance.

To this end, we critically reconsider the characteristics
illustrated in Figure 1: Why focus solely on bridging the
gap between different modalities, rather than strategically
enhancing the strengths of the dominant one? However,
directly enhancing the dominant modality while treating
all modalities equally and employing bidirectional informa-
tion transfer across all modality pairs often introduces re-
dundancy and conflicts (Hazarika, Zimmermann, and Poria
2020), thereby reducing overall performance. In contrast,
our work strategically leverages a pivotal characteristic of
MSA: language has been empirically recognized as the dom-
inant modality (Tsai et al. 2019). Building on this insight,
we intend to develop a novel Language-Focused Attractor
(LFA), a targeted enhancement scheme designed to trans-
fer complementary information exclusively to the dominant
language modality, which consolidates information through
pathways such as Video → Language, Audio → Language,
and Language → Language, resulting in effectively mini-
mizing redundancy and conflicting information and improv-
ing overall MSA accuracy.

To achieve this, we propose a Disentangled-Language-
Focused (DLF) multimodal representation learning frame-
work to fully exploit the potential of language-dominant
MSA. The framework follows a structured pipeline: fea-
ture extraction, disentanglement, enhancement, fusion, and
prediction. To specifically address the issues of redundancy
and conflicting information to facilitate language-targeted
feature enhancement, DLF introduces four geometric mea-
sures as regularization terms in the total loss function, ef-

fectively refining shared and specific spaces both separately
and jointly. Within the modality-specific space, we further
develop the LFA to enhance language representation by at-
tracting complementary information from other modalities.
This process is guided by a Language-Query-based multi-
modal cross-attention mechanism, ensuring precise and tar-
geted feature enhancement between heterogeneous modality
pairs (X→Language, where X refers to Language, Video,
or Audio). Finally, the enhanced shared and specific features
are fused, followed by hierarchical predictions to further im-
prove overall prediction accuracy.

Our main contributions can be summarized as follows:

• Proposed Framework: In this study, we propose a
Disentangled-Language-Focused (DLF) multimodal rep-
resentation learning framework to promote MSA tasks.
The DLF framework presents a structured pipeline: fea-
ture extraction, disentanglement, enhancement, fusion,
and prediction.

• Language-Focused Attractor (LFA): We develop the
LFA to fully harness the potential of the dominant lan-
guage modality within the modality-specific space. The
LFA exploits the language-guided multimodal cross-
attention mechanisms to achieve a targeted feature en-
hancement (X→Language).

• Hierarchical Predictions: We devise hierarchical pre-
dictions to leverage the pre-fused and post-fused fea-
tures, improving the total MSA accuracy. Comprehensive
ablation studies further validate the effectiveness of each
component in the DLF framework.

Related Work
Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) integrates informa-
tion from diverse modalities, such as language, video, and
audio (Ali and Hughes 2023; Ezzameli and Mahersia 2023).
Mainstream methods can be categorized into representation
learning-oriented (Guo et al. 2022; Sun et al. 2023; Yang
et al. 2022c) and fusion-oriented approaches (Zhang et al.
2023; Huang et al. 2020; Tsai et al. 2019). Representation
methods like (Guo et al. 2022), enhance cross-modal in-
teractions, while fusion techniques, including Transformer-
based model (Huang et al. 2020), focus on combining fea-
tures effectively. Despite progress, performance disparities
among modalities hinder the overall prediction accuracy.
To this end, distillation-based strategies were introduced to
bridge the gap. For instance, Kim and Kang (2022) pro-
posed cross-modal distillation between textual and auditory
modalities to enhance emotion classification granularity. To
dynamically adapt to distillation, ternary-symmetric archi-
tectures (MulT) (Tsai et al. 2019) or graph distillation units
(Zadeh et al. 2018b; Li, Wang, and Cui 2023) were intro-
duced, representing modalities as vertices and their interac-
tions as edges. Recent approaches also leverage large mul-
timodal language models for flexible interactions (Wu et al.
2023) and integrate contextual knowledge to boost predic-
tions (Wang et al. 2024). However, previous paradigms treat
different modalities equally, easily causing redundant and



Figure 2: Overview of the proposed DLF framework. The framework follows a pipeline of feature extraction, disentanglement,
enhancement, fusion, and prediction, featuring three core components: the feature disentanglement module, the Language-
Focused Attractor (LFA), and hierarchical predictions (including shared prediction, specific prediction, and final prediction).

conflicting information. Our proposed Language-Focused
Attractor (LFA) directs knowledge transfer to the dominant
language, mitigating redundant and conflicting information
and enhancing overall performance.

Disentangled Multimodal Representation Learning

Disentangled multimodal representation learning aims to
separate distinct factors of variation across multiple modal-
ities (e.g., vision, language, audio) into independent sub-
spaces (Yang et al. 2023b; Li et al. 2024b; Yang et al. 2023a).
Tsai et al. (2018) introduced the concept of factorized rep-
resentations for multimodal data, designed to disentangle
modality-specific and shared components, successfully iso-
lating audio and visual features in audiovisual speech recog-
nition. Building on this, Hazarika, Zimmermann, and Po-
ria (2020) proposed the MISA framework, which projects
each modality into common and private feature spaces,
reducing inter-modality disparities while enhancing repre-
sentation diversity. Further advancements including Yang
et al. (2022a,c), employed metric learning and adversar-
ial learning to construct modality-invariant and modality-
specific subspaces, significantly improving multimodal fu-
sion. Li, Wang, and Cui (2023) developed a decoupled mul-
timodal distillation (DMD) approach to address distribution
gaps between modalities. However, previous methods uni-
formly treat all modalities regarding the purpose of disen-
tanglement. In our DLF, disentanglement aims to facilitate
language-targeted feature enhancement in LFA, thus, we in-
troduce four measures as regularization terms, carefully de-
signed to reinforce disentanglement by jointly and indepen-
dently optimizing shared and specific spaces.

Proposed Approach
Preliminaries. As shown in Figure 2, the task of MSA aims
to predict the sentiment intensity or label of given multi-
modal inputs. In DLF, three modalities are concurrently con-
sidered, such as Language (L), Vision (V ), and Audio (A),
represented as 2D tensors X̂m ∈ RNm×dm , where Nm is
the sequence length, dm is the embedding dimension, and
m ∈ {L, V,A} means different modalities.

Overview
The framework of the proposed DLF is illustrated in Figure
2. It adopts a structured pipeline comprising feature extrac-
tion, disentanglement, enhancement, fusion, and prediction.
The framework integrates three core components: the feature
disentanglement module, the Language-Focused Attractor
(LFA), and hierarchical predictions (shared, specific, and fi-
nal predictions). DLF decomposes multimodal features into
modality-shared and modality-specific spaces to minimize
redundancy and conflicts among heterogeneous modalities.
To reinforce this decoupling, four geometric measures are
incorporated into the total loss as regularization terms. Ad-
ditionally, the LFA is designed to leverage the dominant lan-
guage modality by integrating complementary information
from other modalities, thereby enhancing language repre-
sentation. Finally, hierarchical predictions are performed to
boost overall MSA performance. The details are as follows:

Feature Disentanglement Module
To reduce redundant and conflicting information, the pro-
posed DLF framework utilizes a shared encoder and three
modality-specific encoders to decompose multimodal in-
formation into modality-shared and modality-specific fea-
ture spaces, denoted as Shm and Spm, respectively, where



m ∈ {V,L,A}. Formally, the shared and specific encoders
are defined as:

Shm = ESh
m (X̂m), (1)

Spm = ESp
m (X̂m), (2)

where ESh
m and ESp

m represent the shared and specific en-
coders, respectively. In this work, both encoders are imple-
mented as cascaded Transformer layers.

For effective disentanglement, DLF incorporates the reg-
ularization effect of carefully designed regularization terms.
While classical approaches often employ distribution sim-
ilarity measures such as KL-Divergence along the hidden
dimensions (Kim and Mnih 2018), we adopt four geometric
measures based on Euclidean distances and cosine similarity
due to their intuitive nature and computational efficiency.

After initial disentanglement, DLF concatenates Shm and
Spm for each modality and reconstruct the multimodal
input X̂m, resulting X̂ ′

m by decoding the fused features
[Shm⊕Spm]. This process can be formulated as follows:

X̂ ′
m = Dm([Shm ⊕ Spm]), (3)

where Dm is the 1D convolution decoder, and ⊕ is the con-
catenation operation. The discrepancy between the low-level
features X̂m and the generated features X̂ ′

m, called the re-
construction loss Lr, can serve as a regularization term con-
tributing to the feature disentanglement module:

Lr = ||X̂m − X̂ ′
m||2. (4)

Furthermore, the modality-specific reconstruction process
can be formulated as:

Spm′ = ESp
m (X̂ ′

m), (5)

where Spm′ is estimated modality-specific features from the
modality-specific reconstruction process. Naturally, the dis-
crepancy between original modality-specific features Spm

and the estimated ones Spm′ can be regarded as the specific
loss Ls:

Ls = ||Spm − Spm′||2. (6)

Although the reconstruction loss Lr and specific loss Ls

contribute to the decoupling process, their effectiveness in
achieving robust disentanglement remains limited. This lim-
itation arises from the potential sub-optimal performance
of the shared encoder during the initial training phase, es-
pecially when compared to the modality-specific encoder.
Such a disparity, if left unaddressed, is exacerbated by these
loss functions, causing an increasing divergence between the
two encoders as training progresses. Therefore, we incor-
porate a modified triplet loss (Schroff, Kalenichenko, and
Philbin 2015) to enhance the performance of the modality-
shared encoder. The triplet loss is defined as:

Lm =
1

|T |
max (0, d (S, P )− d (S,N) + µ) , (7)

where S represents a sampled modality in the modality-
shared space, P denotes the positive sample corresponding
to the representation of the same sentiment across different

modalities, and N refers to the negative sample represent-
ing distinct sentiments within the same modality. T is the
total number of positive and negative samples, d(·, ·) com-
putes the cosine similarity between two feature vectors, and
µ represents a distance margin.

The aforementioned losses, Lr, Ls, and Lm, regulate the
shared and specific features to ensure they focus on their re-
spective objectives. To further refine the decoupling between
these two spaces, a soft orthogonality loss, Lo, is introduced
to minimize redundancy and conflicts between shared and
specific multimodal features. It is defined as:

Lo = O(Shm, Spm), (8)

where O(·, ·) represents a non-negative counterpart of co-
sine similarity, promoting orthogonality between the two
feature spaces.

Eventually, the four geometric-measure-based regular-
ization terms, addressing both inter- and intra-decoupled
spaces, are combined to form the decoupling loss:

Ld =
∑

k∈{r,s,m,o}

λkLk, (9)

where λk are weighting coefficients for the individual regu-
larization terms, providing a flexible mechanism to balance
their contributions and calibrate the model effectively.

Language-Focused Attractor (LFA)
Unlike conventional feature enhancement methods that aim
to bridge modality gaps through cross-modal and graph dis-
tillation (Gupta, Hoffman, and Malik 2016; Guo et al. 2020;
Aslam et al. 2023; Li, Wang, and Cui 2023), we propose the
LFA in the modality-specific space after feature decoupling.
The detailed structure of LFA is depicted in Figure 3.

In the LFA, decoupled modality-specific features Spm

(where m ∈ {L, V,A}, representing language, vision, and
audio) are first processed through positional embedding
and dropout, then fed into Multimodal Transformer lay-
ers. The core operation within these layers is the Multi-
modal Cross-Attention (MCA) mechanism. LFA performs
three branches of MCA, including one self-attention and two
cross-attention mechanisms, all centered on the language
modality as the Query (QL). This setup allows the language
modality to attract complementary information from other
modality-specific features Spm, where m ∈ {L, V,A}. The
corresponding Key-Value pairs are defined as (Km, Vm). The
MCA operation is mathematically expressed as:

MCA(QL,Km, Vm)

= softmax

(
QLK

T
m√

d

)
Vm

= softmax

(
(SpL)WQL

(Spm)WT
Km√

d

)
(Spm)WVm

(10)
where m ∈ {L, V,A}, softmax represents normalized at-
tention score between QL and Km, WQL

and WKm
are

learnable parameters, d indicates the dimension of QL and



Figure 3: The details of the proposed LFA. The language-
focused cross-attention and self-attention achieve targeted
feature enhancement: V→L, A→L, and L→L.

Km. Consequently, the language-focused feature enhance-
ment in the Multimodal Transformer is defined as:

hn+1
m = LayerNorm(hn

m +Drop(MCA(hn
m)))

ho
m = LayerNorm(hn+1

m + FFN(hn+1
m ))

(11)

where m ∈ {L, V,A}, Drop(·) denotes the Dropout opera-
tion, and FFN(·) represents a feed-forward module. Here,
hn
m and hn+1

m are the input and intermediate features, respec-
tively, while ho

m is the output of a Multimodal Transformer
layer. As illustrated in Figure 3, cascaded Multimodal Trans-
formers are employed to enhance modality-specific features.

The LFA effectively leverages modality-specific features
from three modalities, aligning them with the language
modality to strengthen multimodal representation. As shown
in Figure 2, the enhanced features are projected into higher-
level specific features, denoted as HSpm (m ∈ {L, V,A}),
and then integrated with enhanced shared features. Addi-
tionally, these features are processed by modality-specific
predictors for the specific prediction.

Multimodal Fusion. As illustrated in Figure 2, modality-
shared features are first processed through a unified Trans-
former layer, followed by two fully connected layers, and
then projected into higher-level shared features, denoted as
HSh. Finally, the multimodal fusion layer combines HSh
with HSpm to form the final multimodal features:

F (HSh,HSpm)

= Concat(HSpL, HSpV , HSpA, HSh),
(12)

where Concat denotes the concatenation operation.

Hierarchical Predictions
As shown in Figure 2, a classifier can predict the MSA out-
put ŷ after multimodal fusion. The final MSA output loss Lf

is defined as:

Lf =
1

Nd

Nd∑
n=0

|ŷn − yn|, (13)

where yn is the MSA label, Nd is the number of sam-
ples. Unlike traditional MSA learning, which only involves
a single output loss Lf , the proposed DLF explores hier-
archical predictions considering modality-shared loss LSh,
modality-specific loss LSpm , and the output loss Lf concur-
rently. The total MSA learning loss is thus expressed as:

LMSA =
∑

l∈{f,Sh,Spm}

βlLl, (14)

where m ∈ {L, V,A}, βl are weighting coefficients that
control the relative importance of different losses.

Overall Learning Objective. The proposed DLF frame-
work integrates the decoupling loss Ld and the total MSA
learning loss LMSA to form the overall learning objective:

LDLF = Ld + LMSA. (15)

Experiments
Datasets and Evaluation Metrics
We evaluate DLF on two widely used datasets: CMU Multi-
modal Sentiment Intensity (MOSI) (Zadeh et al. 2016) and
CMU Multimodal Opinion Sentiment and Emotion Intensity
(MOSEI) (Zadeh et al. 2018b).

MOSI. The MOSI dataset comprises 2,199 monologue
video clips, with audio and visual features extracted at 12.5
Hz and 15 Hz, respectively. The dataset is divided into 1,284
training, 229 validation, and 686 test samples.

MOSEI. The MOSEI dataset, significantly larger, con-
sists of 22,856 movie review video clips sourced from
YouTube. Features are extracted at 20 Hz for audio and 15
Hz for visual modalities. The dataset is split into 16,326
training samples, 1,871 validation samples, and 4,659 test
samples. For both datasets, each video clip is annotated with
a sentiment score ranging from -3 to 3, representing a spec-
trum from highly negative to highly positive sentiment.

Evaluation Metrics. Consistent with established prac-
tices in previous studies (Liang et al. 2021; Lv et al. 2021;
Mao et al. 2022), the performance of MSA is evaluated using
multiple metrics: 7-class accuracy (Acc-7), 5-class accuracy
(Acc-5), binary accuracy (Acc-2), F1 score, correlation be-
tween model predictions and human annotations (Corr), and
mean absolute error (MAE). These metrics collectively offer
a comprehensive assessment of DLF’s effectiveness across
various sentiment analysis tasks.

Implementation Details
In this study, we align our methodology with previous works
(Hazarika, Zimmermann, and Poria 2020; Mao et al. 2022)
by utilizing the BERT-base-uncased model (Devlin et al.
2018) to extract unimodal linguistic features. This process
generates word representations with a 768-dimensional hid-
den state. For visual data, DLF employs the Facet framework
(Baltrušaitis, Robinson, and Morency 2016) to encode each



Method CMU-MOSI CMU-MOSEI

Acc-7(↑) Acc-5(↑) Acc-2(↑) F1(↑) Corr(↑) MAE(↓) Acc-7(↑) Acc-5(↑) Acc-2(↑) F1(↑) Corr(↑) MAE(↓)

TFN* 34.90 39.39† 80.08 80.07 0.698 0.901 50.20 53.10† 82.50 82.10 0.700 0.593
LMF* 33.20 38.13† 82.50 82.40 0.695 0.917 48.00 52.90† 82.00 82.10 0.677 0.623
EF-LSTM† 35.39 40.15 78.48 78.51 0.669 0.949 50.01 51.16 80.79 80.67 0.683 0.601
LF-DNN† 34.52 38.05 78.63 78.63 0.658 0.955 50.83 51.97 82.74 82.52 0.709 0.580
MFN† 35.83 40.47 78.87 78.90 0.670 0.927 51.34 52.76 82.85 82.85 0.718 0.575
Graph-MFN† 34.64 38.63 78.35 78.35 0.649 0.956 51.37 52.69 83.48 83.43 0.713 0.575
MulT 40.00 42.68† 83.00 82.00 0.698 0.871 51.80 54.18† 82.50 82.30 0.703 0.580
PMR 40.60 - 83.60 83.60 - - 52.50 - 83.60 83.40 - -
MISA† 41.37 47.08 83.54 83.58 0.778 0.777 52.05 53.63 84.67 84.66 0.752 0.558
MAG-BERT 43.62 - 84.43 84.61 0.781 0.727 52.67 - 84.82 84.71 0.755 0.543
DMD** 46.06 - 83.23 83.29 - 0.752 52.78 - 84.62 84.62 - 0.543
DLF (Ours) 47.08 52.33 85.06 85.04 0.781 0.731 53.90 55.70 85.42 85.27 0.764 0.536

Table 1: Comparision on MOSI and MOSEI. Bold is the best. Note: † represents the result from THUIAR’s GitHub page (Thuiar
2024), ∗ represents the result from (Hazarika, Zimmermann, and Poria 2020), - represents the result from the original paper is
not provided, and ∗∗ represents reproduced results from public code with hyper-parameters provided in the original paper.

video frame, focusing on 35 distinct facial action units as de-
tailed in (Li et al. 2019). For audio processing, we utilize the
COVAREP framework (Degottex et al. 2014), which pro-
duces 74-dimensional audio features. Our experiments are
implemented using the PyTorch framework and executed on
one NVIDIA V100 GPU with 32GB of memory. The model
is trained with a batch size of 16 and optimized using an ini-
tial learning rate of 1e-4. Early stopping with a patience of
10 epochs is applied to ensure convergence.

Main Results
Baselines. We compare the DLF against eleven leading
MSA methods on both benchmarks, including EF-LSTM
(Williams et al. 2018b), LF-DNN (Williams et al. 2018a),
TFN (Zadeh et al. 2017), LMF (Liu et al. 2018), MFN
(Zadeh et al. 2018a), Graph-MFN (Zadeh et al. 2018b),
MulT (Tsai et al. 2019), PMR (Lv et al. 2021), MISA (Haz-
arika, Zimmermann, and Poria 2020), MAG-BERT (Rah-
man et al. 2020), and DMD (Li, Wang, and Cui 2023).

Performance Comparison. Comparative results, as re-
ported in Table 1, demonstrate that our proposed DLF ex-
hibits superior performance on almost all metrics for both
benchmarks. Particularly, we have the following key obser-
vations. Compared to decoupled-feature-based MSA meth-
ods like MISA (Hazarika, Zimmermann, and Poria 2020),
MulT (Tsai et al. 2019), and DMD (Li, Wang, and Cui
2023), the proposed DLF, especially the LFA, captures ef-
fective intermodality dynamics and further improves the
multimodal representation capability by enhancing the dom-
inant language in the specific subspace. Compared to meth-
ods that leverage multimodal transformers to learn cross-
modal interactions and fusion such as LMF (Liu et al. 2018),
MFN (Zadeh et al. 2018a), and PMR (Lv et al. 2021), our
proposed method learns effective multimodal representa-
tions in the disentangled subspaces and further facilitates
the overall prediction performance using hierarchical predic-
tions which utilizes both pre-fused and post-fused features.

Ablation Study
We conduct extensive ablation studies to thoroughly ex-
amine the impact of various modality combinations, differ-
ent regularization strategies, and critical components includ-
ing the Feature Disentanglement Module (FDM), Language-
Focused Attractor (LFA), and Hierarchical Predictions (HP).

Various Modality Combinations. As shown in Table 2,
all analysis are conducted on the MOSI dataset. We first
present the performance of each unimodality, it is easy to no-
tice that language modality (L) serves as the dominant one.
In the bi-modalities case, we consider both (L,A) and (L,V )
pairs in our DLF framework, the results not only demon-
strate the performance improvement, especially the fine-
grained classification, through two modalities but also show-
case that language modality attracts useful information from
vision (V ) or audio (A) modality by LFA to enhance the
multimodal representation capability. Furthermore, the tri-
modalities DLF consistently outperforms the bi-modalities
DLF on all metrics, which indicates that each modality pro-
vides a unique contribution and multimodal learning can ef-
fectively improve the MSA performance by reasonably ex-
ploiting the information from different modalities.

Different Regularization. We remove each loss to ver-
ify the importance of different regularization terms. When
removing the soft orthogonality loss Lo, the DLF learns de-
coupled features under the constraints that focus on sepa-
rate subspaces. The worst performance suggests the impor-
tance of the soft orthogonality loss considering the shared
and specific subspaces jointly in the feature disentanglement
module. Meanwhile, we also notice that the modified triplet
loss Lm in the shared subspace improves the overall perfor-
mance, which indicates the importance of Lm in learning
shared features in the shared subspace. Besides, we observe
that both reconstruction loss Lr and specific loss Ls con-
tribute to the model’s performance. This is because these two
losses ensure feature consistency during disentanglement.

Critical Components. To verify the effectiveness of dif-



Method Acc-7 (%) Acc-2 (%) F1 (%) MAE(↓)

DLF (Ours) 47.08 85.06 85.04 0.731
Different Modalities

only A 15.31 42.84 26.64 1.453
only V 15.01 43.29 29.73 1.455
only L 45.63 84.45 84.38 0.752
L & A 45.77 83.84 83.88 0.741
L & V 46.65 83.08 83.13 0.745

Different Regularization

w/o Lr 45.92 84.67 84.59 0.734
w/o Ls 45.36 84.60 84.56 0.740
w/o Lm 45.77 83.99 83.97 0.735
w/o Lo 45.77 83.08 83.16 0.738

Different Components

w/o FDM 45.92 84.60 84.58 0.739
w/o LFA 42.71 83.84 83.85 0.767
w/o HP 42.42 84.76 84.74 0.761

Table 2: Results of ablation studies on the MOSI benchmark.

ferent components of DLF, we remove each critical compo-
nent separately. The removal of LFA, replaced by three sep-
arate Query components like MulT (Tsai et al. 2019), leads
to a remarkable decrease in overall MSA performance. This
demonstrates that the LFA is a straightforward and effective
component, mitigating the potential redundancies or con-
flicts in traditional cross-attention mechanisms. Moreover,
when deactivating the FDM, the performance also becomes
inferior to that of DLF, which shows the effectiveness of
the designed FDM and further indicates the redundant and
conflicting information limits the MSA performance. With a
similar phenomenon, subtracting the HP module (which just
remains the final output loss function) decreases the overall
performance again, revealing the value of both the pre-fused
and post-fused features.

Further Analysis
To further study the impact of sentiment granularity on
MSA, we present the confusion matrix and correspond-
ing accuracy of each sentiment for the MOSI benchmark.
As shown in Figure 4, we observe that most sentiment
classes have similar accuracy above 40%. However, “HN”
and “HP”, especially “HN”, have the worst performance,
limiting the overall MSA performance. Furthermore, when
we dive into the confusion matrix, it can be noticed that the
samples for “HN” and “HP” are relatively less than other
sentiments, which strongly indicates that the long-tailed dis-
tribution of the data limits the overall MSA performance,
which can be studied in the future.

To better understand the effectiveness of our method, we
visualize the distribution of fused multimodal representa-
tions. As depicted in Figure 5, compared to DMD, which is
a decoupled-multimodal-distillation strategy, our proposed
DLF shows superior performance to separate different sen-

Figure 4: Left: Confusion matrix for the MOSI dataset.
Right: Corresponding accuracy for each sentiment. HN:
Highly Negative; N: Negative; WN: Weakly Negative; WP:
Weak Positive; P: Positive; HP: Highly Positive.

Figure 5: Visualization of the fused multimodal representa-
tions. HN: Highly Negative; N: Negative; WN: Weakly Neg-
ative; WP: Weak Positive; P: Positive; HP: Highly Positive.

timents. This is mainly due to that the LFA mitigates redun-
dant and conflicting information during multimodal interac-
tion compared to the interaction between random pairs.

Conclusion

In this paper, we propose the DLF framework to improve
the MSA performance. DLF yields powerful multimodal
representations by following the pipeline of feature extrac-
tion, disentanglement, enhancement, fusion, and prediction,
mainly benefiting from the feature disentanglement module,
language-focused attractor, and hierarchical predictions. Ex-
tensive results verify the superiority of DLF by comparisons
with eleven baselines and comprehensive ablation studies.

Broad impacts. (i) This study demonstrates its potential
to exploit the imbalanced capabilities of various modalities
in multimodal learning, thereby setting a new benchmark in
this field. (ii) The proposed LFA facilitates the generaliza-
tion of our method to other multimodal scenarios by chang-
ing the dominant modality. Limitation and future work.
Our method only considers the scenarios of complete modal-
ities. When facing missing modalities, the feature disentan-
glement and enhancement modules are potentially limited.
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