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Abstract
Social recommendation systems leverage the social relations among
users to deal with the inherent cold-start problem in user-item in-
teractions. However, previous models only treat the social graph
as the static auxiliary to the user-item interaction graph, rather
than dig out the hidden essentials and optimize them for better
recommendations. Thus, the potential of social influence is still
under-explored. In this paper, we will fill this gap by proposing a
novel model for social influence learning to derive the essential
influence patterns within the user relationships. Our model views
the social influence from the perspectives of (1) the diversity of
neighborhood’s influence on the users, (2) the disentanglement of
neighborhood’s influence on the users, and (3) the exploration of
underlying implicit social influence. To this end, we first employ a
novel layerwise graph-enhanced variational autoencoder for the
reconstruction of neighborhoods’ representations, which aims to
learn the pattern of social influence as well as simulate the social
profile of each user for overcoming the sparsity issue in social re-
lation data. Meanwhile, we introduce a layerwise graph attentive
network for capturing the most influential scope of neighborhood.
Finally, we adopt a dual sampling process to generate new social
relations for enhancing the social recommendation. Extensive ex-
periments have been conducted on three widely-used benchmark
datasets, verifying the superiority of our proposed model compared
with the representative approaches.
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1 Introduction
Social recommendation is one type of recommendation systems that
leverages the social network among users to extract personalized
information on individuals. According to the study of homophily in
social networks [26, 39], recommendation systems can be modeled
not only based on users’ purchase records but also their social rela-
tions. As commonly known, people may make decisions under the
influence of their relatives. This is the so-called social influence. Re-
garding the types of social influence, it is worth noting that explicit
social influence should be direct, trustworthy, and acknowledged
connections among users, while implicit social influence is the po-
tential connections between users having similar preferences. In
most scenarios, explicit social influence can be retrieved from the
relational data on social media. Previous works [8, 14, 23] have
shown the outperformance of social recommendation systems as
compared to general recommendation systems.

While social recommendation has the capability to deal with
personalization and correlations, there are still many challenges to
address. Existing models mostly take the social relation data as the
static auxiliary to the user-item interaction data, and they simply
combine the data to handle the cold-start problem in recommen-
dation. However, the shallow links given by the social relations
may not reveal the essential influences among users. This problem
is totally ignored by those previous works. Overall, the following
three challenges need to be attached importance:

Explicit Influence I - Social Influence Diversity: Users may con-
nect with each other through various relationships (e.g. friends,
family, and fellows, as shown in Figure 1(a)). Different types of
relationships should have different patterns of influence passing.
However, owing to the privacy issues, researchers face a lack of
labels on relationships. Therefore, designing a fine-drawn model to
disentangle the relationships is a de facto challenge. It is commonly
believed that users of the same relationships should exhibit similar
behaviors. In that case, we can simply cluster socially connected
users that have bought the same items, and assign them with the
same pseudo-relational labels. Nevertheless, users’ social behaviors
are much more elusive than we thought. The inconsistency and
incompleteness of the original social network, conceived as social
influence diversity, ought to be resolved on an ad hoc basis.
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Figure 1: Toy example of (a) Social Influence Diversity, (b)
Social Influence Propagation, and (c) Social Influence Ex-
ploration. For (b), the values denote the pseudo-consistency
between users with each other.

Explicit Influence II - Social Influence Propagation: Within the
social network, users are interconnected as a whole. Under the
scheme of GNN-based models, users can aggregate from a larger
fraction of users that are not even directly connected. The chal-
lenge of social influence propagation is that different magnitudes
of social influence exist on the graph. Moreover, users in closer
neighborhoods may not always have higher social influence (as
shown in Figure 1(b)). Apart from local social influence that usu-
ally occurs in nearby neighborhoods, global social influence from
larger neighborhoods is also nonnegligible. Hence, instead of the
proximity on graph, the magnitude of social influence propagation
should depend on the consistency of behavior between the user
and the neighborhoods, with higher consistency implying stronger
social influence, and vice versa.

Implicit Influence - Social Influence Exploration: Social influence
is introduced to enhance the recommendation since it mitigates the
data sparsity problem of user-item interactions. However, unlike
user-item interactions, social influence is weak-tie relations, making
it treacherous to be used to predict the strong-tie relations on the
interaction graph. This impels us to work the other way around
— that is, to discover connections within the social network using
the interaction graph. Through user-item interactions, users are
thought to be making implicit influences on those who have bought
similar items (as Figure 1(c)). This makes them potential neighbors
on the social network. However, simply connecting these users on
the social network is irrational and could cause user representation
collapse. Moreover, it is a chicken and egg problem to determine
the social network together with user representations.

To address these challenges, we propose Explicit and Implicit
Influence Social Recommendation System (EIISRS). EIISRS consists
of three corresponding stages: layerwise graph-enhanced varia-
tional autoencoder, layerwise graph attention networks, and dual
sampling process. Our model is a two-tower training architecture,
which includes a social path and a bipartite path. The social network
and the user-item interaction graph are separately feed-forward
to train two different types of user representations. This allows
the model to automatically balance between two paths and avoid
data entanglement. To perform social influence learning, we first
apply Graph Convolutional Networks (GCN) to generate social user
representations. Unlike the previous works, we take the social user
representations generated from different layers of convolution for
the training, so that we can model different scope of neighborhood

separately and disentangle social influence. Next, the representa-
tion of each layer is fed into different Variational Autoencoders
(VAEs) to learn the distribution of neighborhoods, which contains
the social patterns. Meanwhile, to simulate the social influence
diversity, the reparameterization trick is used to sample neighbor-
hood representations. The representations of different layers are
then fused by a layerwise graph attention network for modeling
the different magnitudes of social influence. Finally, to generate
augmented neighborhoods for social influence exploration, a dual
sampling (Gumbel sampling followed by Bernoulli sampling) is
applied to prevent user representation collapse. Overall, the major
contributions of this paper are summarized as follows:

• We analyze and sort out three different challenges in social
recommendation systems, and propose three novel compo-
nents to deal with them accordingly.
• We propose a GCN-based two-tower architecture to incor-
porate a layerwise graph-enhanced variational autoencoder,
a layerwise graph attention network, and a dual sampling
process. To the best of our knowledge, we are the first to
combine these methods for social network disentanglement
in social recommendation systems.
• We conduct extensive experiments on multiple real-world
datasets to demonstrate the superiority of the proposed
model and the effectiveness of each component.

2 Methodology
In this section, we introduce our model EIISRS in detail. We will
elaborate on our framework (as Figure 2) and three components
used to solve the respective challenges of social influence modeling.

2.1 Preliminaries
Let 𝑢 denote the user and 𝑖 denote the item within the dataset.U =

{𝑢1, 𝑢2, . . . , 𝑢𝑚} represents the entire user set andI = {𝑖1, 𝑖2, . . . , 𝑖𝑛}
represents the entire item set, where the total numbers of users
and items are |U| = 𝑚 and |I | = 𝑛, respectively. R ∈ R𝑚×𝑛 is
the binary user-item interaction matrix. Given a user-item pair
(𝑢, 𝑖), 𝑟𝑢,𝑖 = 1 implies that user 𝑢 purchased item 𝑖 and should be
interested in it, whereas 𝑟𝑢,𝑖 = 0 implies no interaction. S ∈ R𝑚×𝑚
refers to the social matrix, whose entries are 1 if the corresponding
users are socially connected and 0 otherwise. We build a bipartite
graph G𝑟 = {(𝑢, 𝑟𝑢,𝑖 , 𝑖) |𝑢 ∈ U, 𝑖 ∈ I, 𝑟𝑢,𝑖 ∈ {0, 1}} from the user-
item interaction matrix R. Likewise, we build a social graph G𝑠
from the social matrix S. I(𝑢) is the item set containing the items
purchased by user 𝑢. N(𝑢) is the set of neighboring users who are
directly connected to user 𝑢 on the social network. Each convolu-
tion layer in our model generates neighborhood representations.
These representations are denoted as {P (0) , P (1) , . . . , P (𝐿) } for
users and {Q (0) ,Q (1) , . . . ,Q (𝐿) } for items, where P (𝑙 ) ∈ R𝑚×𝑑 and
Q (𝑙 ) ∈ R𝑛×𝑑 represent the 𝑙-th layer embeddings of 𝑑-dimensional
size. In our model, we focus on top-K recommendations, and 𝑟𝑢,𝑖
denotes the computed likelihood that user 𝑢 is interested in item 𝑖 ,
i.e., the recommendation score. We use bold capital letters to denote
matrices and bold lowercase letters to denote vectors. Note that
N(·) refers to the set of neighbors, while N (·) in boldface refers
to the normal distribution.
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Figure 2: The framework of EIISRS.

2.2 Dual-Path Graph Convolution
In our model, we use a two-tower setting, including the bipartite
path and the social path. The bipartite path takes G𝑟 as input and
jointly encodes user and item representations. The social path takes
G𝑠 as input and encodes another set of user representations. Since
the patterns on different graphs are of different importance to the
representation learning, we need to control how much information
to feed forward in each path. To achieve that, we propose to prepro-
cess the base user representations P (0) with dual partial maskings,
which can be learned using the filtering Self-Gating Units (SGUs)
[3] that adopt the idea called multiplicative skip connection:

P (0)
𝑝𝑎𝑡ℎ

= 𝑓𝑠𝑔𝑢 (P (0) ) = P (0) ⊙ 𝜎 (P (0)W𝑝𝑎𝑡ℎ
𝑔 + b𝑝𝑎𝑡ℎ𝑔 ), (1)

where W𝑝𝑎𝑡ℎ
𝑔 ∈ R𝑑×𝑑 and b𝑝𝑎𝑡ℎ𝑔 ∈ R𝑑 are learnable parameters,

𝑝𝑎𝑡ℎ ∈ {𝑟, 𝑠} denotes the path, ⊙ represents the Hadamard product,
and 𝜎 is the nonlinear activation function. Here we use the sigmoid
function as the activation since it squashes the values into [0, 1]
for the gating.

Referring to the graph convolutional scheme proposed in [17],
graph convolutions in our model can be rewritten as:

P (𝑙+1)𝑟 = D−1𝑢𝑠𝑒𝑟RQ
(𝑙 ) , (2)

Q (𝑙+1) = D−1𝑖𝑡𝑒𝑚R⊤P (𝑙 )𝑟 , (3)

P (𝑙+1)𝑠 = D−1𝑠 SP (𝑙 )𝑠 , (4)

where P (𝑙 )𝑟 and P (𝑙 )𝑠 are the 𝑙-th layer user representations gen-
erated from the user-item interaction graph and social graph, re-
spectively. D𝑢𝑠𝑒𝑟 , D𝑖𝑡𝑒𝑚 , and D𝑠 are the diagonal degree matrices

of R, R⊤, and S. We follow the guidance of LightGCN [11] and
employ neighborhood information aggregations without feature
transformations and nonlinear activation functions.

2.3 Social Influence Learning
After the elementary graph convolutions, the social influence learn-
ing phase follows to capture comprehensive social patterns for
improved recommendations.

2.3.1 Social Influence Diversity. Social influence is diverse as users
are interconnected over various relationships. Moreover, social net-
works are sparse. Only part of the links are observable while the
rest remain unknown. Therefore, one way to optimize social net-
work modeling is to apply link predictions and abnormal detections.
However, it will be expensive to train such a model, and the model
will need to comply with a pre-training/fine-tuning framework. We
wish to use a lightweight and end-to-end scheme for capturing the
social influence diversity.

To this end, we use VAE [15] as a building block and propose
Layerwise Graph-Enhanced Variational AutoEncoder (LGE-VAE).
Specifically, the input features of LGE-VAE are {P (0)𝑠 , P (1)𝑠 , . . . , P (𝐿)𝑠 },
the layerwise neighborhood representations learned from previous
social graph convolutions. LGE-VAE encodes these features as lay-
erwise distributions over the latent space. Then, LGE-VAE samples
a set of representations {Z (0)𝑠 ,Z (1)𝑠 , . . . ,Z (𝐿)𝑠 } for each user from
the layerwise distributions. The uncertainty within the sampling
process helps to capture the diversity in social influence. Finally, a
decoder is used to reconstruct the input features.
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Overall, the encoder can be viewed as the posterior distribution
𝑝𝜙 (Z

(𝑙 )
𝑠 |P

(𝑙 )
𝑠 ) with learnable parameters 𝜙 . Following the conven-

tions, the intractable posterior distribution is approximated with a
Gaussian distribution as the prior distribution, defined as follows:

𝑞𝜙 (Z
(𝑙 )
𝑠 |P

(𝑙 )
𝑠 ) = N (𝜇 (P (𝑙 )𝑠 ), 𝜎2 (P

(𝑙 )
𝑠 )), (5)

where 𝜇 (·) and 𝜎 (·) are the functions that compute the mean and
standard deviation for the layerwise representations. Here, we as-
sume that the Gaussian distribution is anisotropic. That is, the
deviations of layerwise neighborhood distributions are different
across users and dimensions. This helps to capture each user’s
unique interests and affection to items [45].

Specifically, the encoder of LGE-VAE generates the layerwise
mean 𝝁 (𝑙 ) ∈ R𝑚×𝑑 and the layerwise standard deviation 𝝈 (𝑙 ) ∈
R𝑚×𝑑 . Given the distributions, we apply the reparameterization
trick to sample new social neighborhood representations as below:

𝝁 (𝑙 ) ,𝝈 (𝑙 ) = 𝑀𝐿𝑃 (P (𝑙 )𝑠 ,W𝑒𝑛𝑐 ), (6)

Z (𝑙 )𝑠 = 𝝁 (𝑙 ) + 𝝈 (𝑙 ) ⊙ 𝝐, 𝝐 ∼ N (0, I), (7)

where W𝑒𝑛𝑐 ∈ R𝑑×2𝑑 is the learnable parameter for the encoder,
𝑀𝐿𝑃 (·) : R𝑚×𝑑 × R𝑑×2𝑑 ↦→ R𝑚×2𝑑 is the Multilayer Perceptron
(MLP), and 𝝐 ∈ R𝑚×𝑑 is the Gaussian noise. This sampling process
can be regarded as a simulation of social influence diversity. Then,
we take the negation of the Evidence Lower Bound (ELBO) as the
loss function of LGE-VAE, which is defined as follows:

L𝑣𝑎𝑒 (𝜓, 𝜙, 𝛽) = − E𝑞𝜙 [log𝑝𝜓 (P
(𝑙 )
𝑠 |Z

(𝑙 )
𝑠 )]

+ 𝛽𝐾𝐿(𝑞𝜙 (Z
(𝑙 )
𝑠 |P

(𝑙 )
𝑠 ) | |𝑝 (Z

(𝑙 )
𝑠 )),

(8)

where 𝜙 and𝜓 are learnable parameters of the encoder and decoder,
respectively. The first term is the reconstruction loss while the
second term is the KL divergence loss. Here we adopt 𝛽-VAE, where
the hyperparameter 𝛽 helps to discover disentangled latent factors.
When 𝛽 → 1, 𝛽-VAE degrades to regular VAE, in which the KL
divergence will take as much importance as the reconstruction loss.
We set 𝛽 ≪ 1 to prioritize the reconstruction loss and stabilize
the training of the encoder. It is worth noting that, LGE-VAE is
different from VAE and VGAE in that it inputs neither the real-
world attributes as features nor the entire graph structure.

2.3.2 Social Influence Propagation. The previous graph convolu-
tions and social diversity simulations together generate a set of
representations {Z (0)𝑠 ,Z (1)𝑠 , . . . ,Z (𝐿)𝑠 } for each user, where Z (𝑙 )𝑠

contains the social influence within the 𝑙-hop neighborhood. The
question that follows immediately is how to aggregate these mul-
tilayer social representations. As shown in Table 1, there are four
main categories of aggregation methods. For instance, mean pool-
ing is the most commonly used one, which has been proven to be
effective in preventing over-smoothing. However, it cannot well
disentangle the social influence of distinct layers. Meanwhile, social
influence should be propagated from a neighborhood of appropri-
ate size, neither too large that consists of noise nor too small that
results in collapse. To this end, we apply the attention mechanism
[31] to aggregate the layerwise social representations. For each user
𝑢, the tuple (𝜶 0,𝜶 1, . . . ,𝜶𝐿) contains the attention scores for each
layer of representations. The function to compute the attention

scores is 𝑓𝑎𝑡𝑡 , defined as:

𝛼𝑙 = 𝑓𝑎𝑡𝑡 (Z
(𝑙 )
𝑠 ) =

exp(a⊤W𝑎𝑡𝑡Z
(𝑙 )
𝑠 )∑𝐿

𝑗=0 exp(a⊤W𝑎𝑡𝑡Z
( 𝑗 )
𝑠 )

, (9)

where both a ∈ R𝑑 and W𝑎𝑡𝑡 ∈ R𝑑×𝑑 are trainable parameters.
The final representation of user in social path after the aggrega-
tion is P̃𝑠 =

∑𝐿
𝑙=0 𝛼𝑙Z

(𝑙 )
𝑠 . In fact, explicit social influence is usually

Table 1: Methods for aggregating layerwise representations.
"Unified" denotes the integrated learning of social influence
in different layers. "Single" indicates that each user is repre-
sented by only one representation vector. "Anti-OS" refers
to the relief of impacts from over-smoothing. For Max, it is
common to select a pre-defined layer.

Method Mean Max Concat. Att.

Agg(·) 1
𝐿+1

∑𝐿
𝑙=0 Z

(𝑙 ) max
𝑙
(Z (𝑙 ) ) ∥𝐿

𝑙=0Z
(𝑙 ) ∑𝐿

𝑙=0 𝛼𝑙Z
(𝑙 )

Time O(𝐿𝑚𝑑) O(1) O(1) O(𝑚𝑑 (𝐿 + 𝑑))
Model LightGCN[11] GCN[17] NGCF[32] MLAP[13]
Unified ✓ × ✓ ✓

Single ✓ ✓ × ✓

Anti-OS × ✓ ✓ ✓

Adaptive × × × ✓

very noisy. Even shallow (e.g., 1-hop) propagations can contain
much noise, making it hard to extract useful information therefrom
[42, 43]. Recently, layerwise weighted graph network has shown
effectiveness on graph representation learning [13, 21], but it has
yet to find its place in recommendations. The LightGCN experi-
ment [11] demonstrated the futility of layerwise graph attention for
recommendations, as the user-item bipartite graph does not reflect
informative patterns between layers. Different from previous works,
we are the first to apply layerwise attention mechanism for social
recommendation tasks. It helps to balance layerwise messages and
filter out noise on the social graph, such that useful information
can be extracted despite the noisiness in explicit social influence.

2.3.3 Social Influence Exploration. Apart from explicit social in-
fluence, implicit social influence also plays an important role in
social recommendations, since it aligns the social graph with the
user-item bipartite graph via indirect relations between users. Dif-
ferent from social diversity simulation that endeavors to improve
representations, social influence exploration aims to model the con-
nectivity between users on the social network. To this end, we
adopt selector layers with Gumbel sampling [1, 45], which simu-
lates relation sampling under an extreme value distribution. This
generates a new list of candidate neighbors for each user based
on top-𝐾 relations. Formally, we apply 𝐾 selectors to compute the
scores between users. For user 𝑢 and selector 𝑖 , the scores between
𝑢 and other users are defined as follows:

𝑆𝑖𝑚(𝑢, 𝑖) = 𝑎𝑐𝑡 ((P𝑟p⊤𝑢 ) ⊙W (𝑖 )
𝑠𝑒𝑙𝑒𝑐𝑡

), (10)

𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑖) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 ( log(𝑆𝑖𝑚(𝑢, 𝑖) + g)
𝜏

), (11)
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where P𝑟 = 1
𝐿+1

∑𝐿
𝑙=0 P

(𝑙 )
𝑟 and p𝑢 ∈ P𝑟 is the representation of

user 𝑢 in bipartite path. W (𝑖 )
𝑠𝑒𝑙𝑒𝑐𝑡

∈ R𝑚 is the learnable 𝑖-th selec-
tor. 𝑎𝑐𝑡 (·) is the activation function. g ∈ R𝑚 is the Gumbel noise
generated by g = − log(− log(𝝁)), where 𝝁 ∼ 𝑈 (0, 1). 𝜏 is the tem-
perature and the scores become discrete when 𝜏 → 0. Scores from
all 𝐾 selectors are summed up to get the top-𝐾 candidate neighbors.

However, directly connecting users with their𝐾 candidate neigh-
bors on the social network can damage the network architecture.
If the candidate neighbors share highly similar preferences, it will
harm the social influence diversity and cause user representation
collapse [33]. To retain the information entropy on graph, for each
user 𝑢, we perform a follow-up Bernoulli sampling on the |N (𝑢) |
explicit neighbors and 𝐾 candidate neighbors as follows:

s̃𝑢 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (
|N (𝑢) |

𝐾 + |N (𝑢) | ), (12)

S̃ = ∥𝑚𝑢=0s̃𝑢 , (13)

where s̃𝑢 ∈ R𝑚 denotes the new neighbor vector of user 𝑢 and
S̃ ∈ R𝑚×𝑚 denotes the new social network. After dual sampling, the
number of user 𝑢’s connected neighbors should be around |N (𝑢) |,
the initial number of neighbors. We set S̃ = S in the first epoch
of training and update it in each following epoch with the dual
sampling process. As the training phases proceed, the social graph
keeps being reconstructed. It could be seen as graph augmentation
to activate and learn the comprehensive social pattern.

2.4 Model Optimization
Now that the user embeddings P̃𝑠 in the social path have gone
through the social influence learning stage, they will be aggregated
with the user embeddings P𝑟 in the bipartite graph. Even though
P̃𝑠 and P𝑟 are both generated from the same initial embeddings,
they do not exist in the same feature space because P̃𝑠 contains
transformations from LGE-VAE. Consequently, P̃𝑠 may not be di-
rectly applied for item predictions on the user-item common space,
i.e., the space shared by P𝑟 and Q. To obtain well-unified user
embeddings, we transform P̃𝑠 before the aggregation:

P 𝑓 𝑖𝑛𝑎𝑙 = P𝑟 + 𝑎𝑐𝑡 (P̃𝑠W𝑎𝑔𝑔), (14)

where W𝑎𝑔𝑔 ∈ R𝑑×𝑑 is a learnable transformation matrix. To train
the model, we use the pairwise Bayesian Personalized Ranking
(BPR) [27] as our recommendation loss function:

L𝑟𝑒𝑐 =
∑︁

𝑖∈I(𝑢 ), 𝑗∉I(𝑢 )
− log𝜎 (𝑟𝑢,𝑖 (𝛀) − 𝑟𝑢,𝑗 (𝛀)), (15)

where 𝛀 refers to all learnable parameters of our model. 𝑟𝑢,𝑖 is the
predicted score for user 𝑢 on item 𝑖 , where 𝑟𝑢,𝑖 = p𝑢q𝑖 , p𝑢 ∈ P 𝑓 𝑖𝑛𝑎𝑙

and q𝑖 ∈ Q. 𝜎 (·) is the sigmoid function. The L2 regularization is
omitted for clarity. At last, we integrate the recommendation loss
L𝑟𝑒𝑐 with the LGE-VAE lossL𝑣𝑎𝑒 , which consists of the reconstruc-
tion loss and the KL divergence loss. Overall, the objective function
of EIISRS is formulated as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑟𝑒𝑐 + 𝛾L𝑣𝑎𝑒 , (16)

where 𝛾 a coefficient to rescaled L𝑣𝑎𝑒 such that the main recom-
mendation task can be prioritized.

Algorithm 1 The first training epoch of EIISRS
Input: user-item interaction matrix R, social networks S, and
initialized user embeddings P (0) and item embeddings Q (0) .
Output: user embeddings P 𝑓 𝑖𝑛𝑎𝑙 and item embeddings Q,
augmented social networks S̃
Update: Social networks S is replaced with augmented social
networks S̃ as input
1: for each epoch do
2: for each batch do
3: P (0)𝑠 , P (0)𝑟 ← Eq.(1); ⊲ Self-gating Unit
4: for 𝑙 = 1 : 𝐿 do
5: P (𝑙 )𝑠 , P (𝑙 )𝑟 , Q (𝑙 ) ← Eq.(2)-(4); ⊲ Graph Conv.
6: 𝝁 (𝑙 ) , 𝝈 (𝑙 ) ← Eq.(8);
7: Z (𝑙 )𝑠 ← Eq.(9); ⊲ Social Diversity Simulation
8: 𝛼𝑙 ← Eq.(5);
9: Calculate the L𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 and 𝐾𝐿𝐷 ;
10: end for
11: P̃𝑠 =

∑𝐿
𝑖=0 𝛼𝑙Z

(𝑙 )
𝑠 ; ⊲ Social Influence Propagation

12: P 𝑓 𝑖𝑛𝑎𝑙 ← Eq.(14);
13: Calculate the pairwise BPR loss L𝑟𝑒𝑐 ;
14: end for
15: S̃ ← Eq.(10)-(13); ⊲ Social Influence Exploration
16: end for
17: return P 𝑓 𝑖𝑛𝑎𝑙 ,Q, S̃

2.5 Complexity
For model size, the size of user and item embeddings in total is
(𝑚 + 𝑛) × 𝑑 . Each self-gating unit and layerwise attention unit
occupies (𝑑 + 1) × 𝑑 , altogether 3 × (𝑑 + 1). 𝐾 selectors take up
𝑘 ×𝑚 in total. Encoder occupies 2 × 𝑑 × 𝑑 while decoder is 𝑑 × 𝑑 ,
same as the aggregation matrix. To sum up, the total size of our
model is approximately equal to (𝑚 +𝑛 + 7𝑑 + 3) ×𝑑 + 𝑘 ×𝑚. Since
𝑑 ≪𝑚𝑖𝑛(𝑚,𝑛) and 𝑘 ≪𝑚, showing our model is fairly portable.

For time complexity, regarding graph convolution, the time
complexity is O(|R+ |𝑑𝐿) for the user-item bipartite graph, and
O(|S+ |𝑑𝐿) for the social graph, where |R+ | and |S+ | denote the
non-zero values of original graphs respectively. Compared with
previous graph-based recommendation systems, we drop the fea-
ture transformation matrix and activation function, so the time
complexity of graph convolution is relatively slower. For the self-
gating units, layerwise attention unit, encoder/decoder of LGE-VAE,
and aggregation matrix, the time complexity is as low as O(𝑚𝑑2).
As for the selector, the time complexity would b O(|U+ |2𝑑) since
we only choose a tiny subset of users to do the processing. Thus,
our model is fairly efficient, too.

3 Experiments
3.1 Experimental Setting
3.1.1 Datasets. We use three widely-used datasets from the real
world for our experiments, which are LastFM1, Flickr2, and Yelp3.
Since our model is based on implicit feedback, we follow the settings

1http://files.grouplens.org/datasets/hetrec2011/
2http://flickr.com
3https://www.yelp.com/dataset/challenge.
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of previous work [46] to binarize all ratings if needed, in which
ratings less than 4 are assigned as 0 and the rest are 1. Table 2 shows
the detailed statistics of the datasets.

Table 2: Statistics of datasets.

Dataset LastFM Flickr Yelp
User # 1,892 8,358 17,237
Item # 17,632 82,120 38,342

Interaction # 92,834 314,809 204,448
Interaction % 0.2783 0.0459 0.0309
Relation # 25,434 187,273 143,765
Relation % 0.7105 0.2681 0.0484

3.1.2 Baselines. To verify the superiority of our model, we com-
pare EIISRS with some representative models as shown below:
• BPR [27]: is one of the most popular traditional recommen-
dation models using pairwise ranking loss. It aims to maxi-
mize the score difference between positive (beloved) items
and negative (disliked) items.
• SBPR [48]: is an extended version of BPR that makes use of
social relations to improve performance. It is based on the
assumption that the positive items of users’ neighbors are
likely to be recommended compared with other items.
• CDAE [40]: is an AE-based model with the denoising mech-
anism for the top-K recommendation. It introduces the user
embeddings in the input layers to provide collaborative sig-
nals. The reconstructed itemset is used for prediction.
• Multi-VAE [22]: is a VAE-based model with multinomial dis-
tribution to model user ratings and capture the collaborative
signals in ratings for prediction.
• NGCF [32]: is one of the first models that incorporate GNNs
to depict user-item interactions. It is able to capture high-
order relations among the interactions through graph prop-
agations layer by layer.
• LightGCN [11]: is a simplified GNN-based recommenda-
tion system. It gets rid of the reluctant transformation and
nonlinear activation function.
• DiffNet++ [37]: is the representative social recommendation
model that simulates social influence diffusion based on GCN.
Derived from previous work DiffNet [38], it explores a more
comprehensive diffusion structure from the user’s social
networks to both social and item space.
• ESRF [45]: is a recent social recommendation model that en-
hances the effect of social networks using adversarial learn-
ing. Alternative neighbors of each user would be generated
and assigned an attentive score for aggregation and distin-
guishing their usefulness.

3.1.3 EvaluationMetrics. For recommendation evaluation, we adopt
four widely used metrics for our task: classification-based metrics
Precision@k, Recall@k, F1@k and a ranking-based metric NDCG@k.
We perform item ranking on all items rather than sampled item sets
to ensure that the evaluation is unbiased and robust. Improvements
over 1% are considered significant [29].

3.1.4 Settings. For a fair comparison, we assign the best parame-
ter settings for each baseline method as previous works did. The
proposed model EIISRS adopts the Adam optimizer for all models
and uses grid search to fine-tune all hyperparameters. For general
settings, the dimension of latent representation is fixed at 50. The
initial learning rate is 1𝑒−3 and the batch size is 2000 for top-10
recommendations. The coefficients are 0.1, 0.01, and 0.2 for recon-
struction loss, KL divergence, and temperature of Gumbel sampling,
respectively. The number of layers of GCN is 2, and the number
of candidate neighbors is 30, which we will discuss in detail in the
following hyperparameter analysis section. For precise assessment,
we split the dataset into the training set and the test set with a
proportion of 8:2. We associate one positive item with one negative
item in each training sample.

3.2 Experimental Results
3.2.1 Overall Performance. The overall performance results of all
the models are shown in Table 3. We highlight the best model in
boldface and underline the follow-up model. The improvements of
our model compared with the follow-up model are also listed at
the bottom of the table. By analyzing the results, we can draw the
following conclusions:

• We categorize all the models to enable better comparisons
among them. Accordingly, we have the traditional statisti-
cal models (i.e., BPR, SBPR), AE-based models (i.e., CDAE,
Multi-VAE), graph-based general recommendation models
(i.e., NGCF, LightGCN), and graph-based social recommen-
dation models (i.e., DiffNet++, ESRF). We observe that the
graph-based models outperform non-graph-based models
since applying GNN message-passing on the social network
can help improve generalization. To our surprise, AE-based
models have the poorest performance among all the base-
lines. This should be attributed to the naive structure of
models and their inability in capturing implicit feedback.
• With the social network as available side information, we ob-
serve that social recommendationmodels (i.e., SBPR, DiffNet++,
ESRF) outperform general recommendationmodels (i.e., BPR,
NGCF) in most cases. This demonstrates the fact that social
influence contains much useful information for improving
recommendations. We can take advantage of such resources
if we properly manage the data. It is worth noting that Light-
GCN has a great capacity to exploit the bipartite graph for
better recommendations, and thus, it outperforms some so-
cial recommendation models on certain datasets. Our model
incorporates LightGCN to assist implicit social influence
exploration. As a result, the effectiveness of social graph
imputation can be well enhanced.
• Overall, EIISRS significantly outperforms all other baselines.
It is convinced that EIISRS can disentangle the characteris-
tics of social influence and adaptively learn comprehensive
social patterns from both the social graph and the bipartite
graph. Referring to the dataset statistics, the percentage of
social links varies among different datasets. This implies
that exploring useful social information can be a challenging
task. We observe that when the social graph is sparse (i.e.,
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Table 3: Overall recommendation performance comparison.

Model LastFM Flickr Yelp

P@10 R@10 F1@10 N@10 P@10 R@10 F1@10 N@10 P@10 R@10 F1@10 N@10

BPR 0.1157 0.1180 0.1168 0.1452 0.0019 0.0020 0.0019 0.0021 0.0019 0.0071 0.0030 0.0045
SBPR 0.1559 0.1564 0.1561 0.2019 0.0018 0.0018 0.0013 0.0024 0.0032 0.0121 0.0051 0.0074

CDAE 0.0364 0.0755 0.0491 0.0682 0.0013 0.0034 0.0019 0.0026 0.0013 0.0110 0.0023 0.0054
Multi-VAE 0.0950 0.1825 0.1250 0.1607 0.0015 0.0044 0.0022 0.0031 0.0028 0.0232 0.0050 0.0118

NGCF 0.1662 0.1708 0.1685 0.2079 0.0026 0.0034 0.0030 0.0034 0.0041 0.0162 0.0066 0.0098
LightGCN 0.1631 0.1676 0.1653 0.2137 0.0033 0.0039 0.0036 0.0044 0.0061 0.0238 0.0097 0.0149

DiffNet++ 0.1722 0.1751 0.1736 0.2069 0.0030 0.0032 0.0031 0.0038 0.0049 0.0179 0.0076 0.0111
ESRF 0.1913 0.1968 0.1940 0.2465 0.0033 0.0046 0.0039 0.0047 0.0055 0.0209 0.0088 0.0130

EIISRS 0.1953 0.2004 0.1978 0.2532 0.0036 0.0047 0.0041 0.0051 0.0066 0.0244 0.0103 0.0153
Improv. 2.1% 1.8% 2.0% 2.7% 9.1% 2.2% 5.1% 7.8% 8.2% 2.5% 6.2% 2.7%

Flickr, Yelp), the performance of graph-based general recom-
mendation models even surpasses that of graph-based social
recommendation models. Still, under our design, EIISRS is
robust and holds the lead when datasets are of high sparsity.

3.2.2 Ablation Study. To investigate the effectiveness of each com-
ponent in the model, we create four variants by removing certain
parts of EIISRS, and we compare them with our original complete
model (i.e., EIISRS). SIP, SID, and SIE refer to the variants where
Social Influence Propagation, Social Influence Diversity, and Social
Influence Exploration have been removed from the model, respec-
tively. Vanilla refers to the backbone model, which has removed
all three components. From Figure 3, we can easily observe that
the performance becomes worse after removing any components.
The most significant performance drop happens in SID. Therefore,
we are convinced that the simulation of social influence diversity
is well-suited to tackle the sparsity and inconsistency issue on the
social network for social recommendations. Meanwhile, by compar-
ing with Vanilla, we conclude that every component is contributing
to our model, and the corporations between components matter.
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Figure 3: Ablation study on different components.

In LightGCN, the authors demonstrated that the weighted sum
of different layers is redundant in their model. To verify the validity
of layerwise attention in our case, we set up another ablation study
on the aggregation methods. As shown in Figure 4, we may find that
Attention-based aggregation outperforms any other aggregation
methods, including Mean pooling, Max pooling, and Concatenation.
The reasons are as follows: (1) in the LightGCN case, layerwise
attention is ineffective due to the user-item alternation on the
bipartite graph, but in our case, it can well capture the patterns of

social influence propagation on the social graph; (2) by combing
the attentive aggregation with social influence diversity, the social
information from different scopes of neighborhoods can be further
generalized and disentangled.
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Figure 4: Ablation study on aggregation methods.

In addition, we investigate the influence of different sampling
methods in exploring the implicit neighborhoods, which has not
been done in the previous work [45]. We choose two more sampling
methods that are commonly used (i.e., Gaussian, Uniform), along
with the Gumbel and None as the control groups. As shown in Table
4, we notice that Gumbel sampling methods can always achieve the
best performance in both ESRF and our model, while Gaussian and
Uniform sampling methods run neck-to-neck. The reasons for the
effectiveness of Gumbel sampling are: 1) the concrete distribution
with the Gumbel-max trick enhances stability under max operation
(e.g., top-k selection), and 2) it can represent any discrete distribu-
tion by discretization [25]. Another observation is that without any
sampling applied, the performance deterioration of EIISRS is more
significant than that of ESRF. This is due to the different down-
stream processing between the two models, where ESRF tries to
attentively aggregate the implicit neighbors’ representations, while
EIISRS tries to build the new augmented social graph for the next
training. As a result, EIISRS is more dependent on a proper sampling
method to avoid noise inference before the Bernoulli sampling.

3.2.3 Hyperparamter Analysis. Figure 5 shows the model perfor-
mance with different numbers of generated implicit neighbors. We
observe that the model performance reaches its peak when there
are 30 new neighbors. Moreover, even when the number of neigh-
bors becomes large enough, the curve fluctuates only within a small
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Figure 7: Visualization of user representations on LastFM.

Table 4: Ablation study on different sampling methods for
ESRF and EIISRS on LastFM.

Model Method P@10 R@10 F1@10 N@10

ESRF

Gumbel 0.1913 0.1968 0.1940 0.2465
Gaussian 0.1902 0.1954 0.1927 0.2447
Uniform 0.1900 0.1948 0.1923 0.2449
None 0.1895 0.1946 0.1920 0.2430

EIISRS

Gumbel 0.1953 0.2004 0.1978 0.2532
Gaussian 0.1921 0.1969 0.1944 0.2504
Uniform 0.1921 0.1977 0.1948 0.2468
None 0.1883 0.1945 0.1913 0.2439

range, and the model still outperforms most other representative
models. This reflects that the common over-sensitivity issue of the
hyperparameter has been well alleviated, which is attributed to the
effectiveness of the Bernoulli Sampling in our model, such that the
social network structure is not damaged even with a large number
of implicit candidate neighbors.
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Figure 5: Impact of the number of generated neighbors.

In addition, Figure 6 shows the model performance with different
temperatures in Gumbel sampling. We can also observe that our
model reaches its best performance when 𝜏 is around 0.2. Similar to
the outputs of different generated neighbors, there are few fluctua-
tions between different results. We are convinced that not only the
number of generated neighbors but also the temperature benefit
from the design of the dual sampling process.
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Figure 6: Impact of temperature in Gumbel sampling.

3.3 Case Study
This section exhibits some case studies of our model as supplements,
in order to illustrate the validity of our hypothesis.
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Figure 8: Visualization of the similarity between sampled
users and their implicit neighbors generated from SIE. The
red line shows the number of implicit neighbors having
higher similarity than that of average explicit neighbors.

3.3.1 Anlaysis of User Representation Collapse. User representa-
tion collapse is defined as the phenomenon where users are stuck
in the observable items but ignore the huge potential of diverse
interests [33]. Under the design of EIISRS, two novel components
(i.e., Social Diversity Simulation, Dual Sampling Process) can allevi-
ate this problem effectively. We follow the previous work [47] to
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analyze user representation collapse with visualization on LastFM
for simplicity. We map the final user representation generated by
different models into two-dimensional normalized vectors using
t-SNE [30], and we plot them with Gaussian Kernel Density Es-
timation (KDE). The upper figure shows the distribution of user
representation and the bottom one is plotted based on their angles
(i.e., 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑦, 𝑥)). Note that NGCF and LightGCN are general rec-
ommendation models, while DiffNet++, ESRF, and EIISRS are social
recommendation models. According to Figure 7, we can observe
that our model yields a more rounded circular graph on the top and
smoother curve peaks on the bottom graph compared with other
models. It demonstrates that EIISRS can well relieve the user rep-
resentation collapse problem when it comes to a sparse user-item
interaction graph or social graph.

3.3.2 Analysis of Implicit Social Graph. In Figure 8, the heatmap
shows the similarity between sampled users and their generated
implicit neighbors based on user embeddings, while 𝛾𝑒𝑥𝑝 and 𝛾𝑖𝑚𝑝

denote users’ average similarities with their explicit and implicit
neighbors computed based on the embeddings of their ground-
truth purchased items. We can observe that all kinds (i.e., exp.
and imp.) of neighbors have low similarities, which reflects the
diversity of social influence. Besides, according to the similarity,
EIISRS can learn useful implicit social influence on Flickr that better
represents users’ behavior and results in the greatest improvement.
On LastFM and Yelp, the implicit social influence rather serves as a
regularization, which contributes more to the sparser social graph
(i.e., Yelp) and is suppressed on the informative one (i.e., LastFM).
This illustrates two practical ways to explore the potential of social
influence in future work given the different natures of social graphs.

4 Related Work
4.1 Social Recommendation Systems
Social recommendation systems have been around since the early
days of social networking in the 2000s [12], and have developed
rapidly in the past decade. Social recommenders are based on the
premise that individuals trust the opinions of their socially con-
nected neighbors more than anonymous sources, rather than focus
solely on the user’s historical behavior. SoRec [23] is one of the ear-
liest papers on social recommendations in the manner of machine
learning. They offer the formal definitions of social recommenda-
tion and analyze its distinguishing features and implications in
contrast to general recommendations. SocialMF [14] and TrustSVD
[8] follow and extend the previous work [18, 19] to introduce the
social impacts into recommendations. They employ social trusts to
transmit the preference and lessen the data sparsity and cold start
concerns. However, such prior methods that can be classified as
social regularization [36] are unable to extract the high-order social
relations and apply them to recommendations. With the develop-
ment of the graph neural network (GNN) [7, 10, 17], it has been
frequently applied to explore the comprehensive patterns among
graphs [5, 11, 32]. By combining the bipartite graph with a social
graph, not only are the user representations learned from the item
domain but also the social relations. DiffNet++ [37] applies the
influence and interest diffusion on different graphs and attentively
aggregates them. ESRF [45] exploits motif-based hypergraphs to

learn the enhanced social recommendations with adversary learn-
ing. Recently, self-supervised learning also empowers great capa-
bility for recommendations [35, 44, 46, 47]. Nevertheless, none of
them have elaborated on the mechanism of social influence through
disentanglement in social recommendations.

4.2 Variational Autoencoder for
Recommendation Systems

Variational Autoencoder (VAE) [15] is a deep generative model that
has gained much appeal in the field of machine learning given its ca-
pacity to learn a low-dimensional representation of input data. The
training of VAE entails maximizing the lower bound on the data’s
probability, which is stated as the sum of the reconstruction loss
from latent representations and Kullback-Leibler (KL) divergence
with a standard normal distribution. Many works on recommen-
dations also employ this powerful technique [20, 22, 24, 28, 34, 49],
where the users’ preferences are encoded into embeddings with
the objective of reconstructing historical ratings. Later, the Varia-
tional Graph Autoencoder (VGAE) [16] follows the idea of VAE and
utilizes graph-structured data as input. Specifically, the encoder of
VGAE is usually a GCNmodel that is more expressive than the tradi-
tional encoder (i.g., MLP). In this way, VGAE-based link prediction
models [4, 6, 9] show their superiority in learning the graph struc-
ture and retrieving better performance. MS-VGAE [9] learns the
multi-scale information by retrieving the latent embeddings in dif-
ferent dimensions. VDGAE [6] applies disentanglement by setting
multi-head frameworks and minimizing the mutual information be-
tween each of the two channels in case of intertwinement. Besides,
HVGAE [2] and ReLearn [41] reveal the potential of using VGAE on
recommendation systems and social network learning, respectively.
However, all of these methods rely heavily on node/edge features,
and whether VGAE works on general graph recommendations and
social recommendations is still underexplored.

5 Conclusion
In our work, we develop a novel recommendationmodel that mainly
focuses on tackling the incompatibility problem inherent in the
social network. We learn the layerwise representations of neigh-
borhoods on the social graph and design LGE-VAE to simulate
the social influence diversity. Then, we apply a layerwise graph
attention network to capture the propagation of social influence.
Finally, we propose a new dual sampling method to explore implicit
social neighbors. With dual sampling, the representation collapse
problem caused by user sparsity can be well addressed. Extensive
empirical studies provide solid evidence that our model is feasible,
efficient, and agile in design. In addition, specific user case studies
have been conducted to investigate the potential usage of social
networks for recommendations in the future.
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