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ABSTRACT
It has been a hot research topic to enable machines to understand
human emotions in multimodal contexts under dialogue scenarios,
which is tasked with multimodal emotion analysis in conversation
(MM-ERC). MM-ERC has received consistent attention in recent
years, where a diverse range of methods has been proposed for
securing better task performance. Most existing works treat MM-
ERC as a standard multimodal classification problem and perform
multimodal feature disentanglement and fusion for maximizing
feature utility. Yet after revisiting the characteristic of MM-ERC,
we argue that both the feature multimodality and conversational
contextualization should be properly modeled simultaneously dur-
ing the feature disentanglement and fusion steps. In this work, we
target further pushing the task performance by taking full con-
sideration of the above insights. On the one hand, during feature
disentanglement, based on the contrastive learning technique, we
devise a Dual-level Disentanglement Mechanism (DDM) to decou-
ple the features into both the modality space and utterance space.
On the other hand, during the feature fusion stage, we propose a
Contribution-aware Fusion Mechanism (CFM) and a Context Re-
fusion Mechanism (CRM) for multimodal and context integration,
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Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3612053

respectively. They together schedule the proper integrations of
multimodal and context features. Specifically, CFM explicitly man-
ages the multimodal feature contributions dynamically, while CRM
flexibly coordinates the introduction of dialogue contexts. On two
public MM-ERC datasets, our system achieves new state-of-the-art
performance consistently. Further analyses demonstrate that all our
proposed mechanisms greatly facilitate the MM-ERC task by mak-
ing full use of the multimodal and context features adaptively. Note
that our proposed methods have the great potential to facilitate a
broader range of other conversational multimodal tasks.
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1 INTRODUCTION
The analysis of conversational emotions [47] has received growing
attention and has been applied in various downstream tasks, like
empathetic response generation [13, 24, 55] and mental disease
treatment [48]. Recently, the research on conversational emotion
analysis has extended the focus from text to multiple modalities
such as video and audio [16, 25, 47]. As illustrated in Figure 1,
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Uh, well... Joey and I broke up.(Sadness)

Oh my God, what happened?(Surprise)

Joey’s a great guy, but we're so different! During your
speech he kept laughing at homo erectus (Sadness)

I knew that was him!(Anger)

Anyway I just, uh, I think it's for the best.(Sadness)

Hey, are you ok? (Neutral)

I guess. (Sadness)

There was hum... There was another reason that
 I thought it was time to end it with Joey. (Neutral)

Figure 1: An example of multimodal conversation from the
MELD dataset [47]. Each utterance comes with three modali-
ties of content: video, audio, and text. The goal of MM-ERC
is to recognize the emotion label of each utterance.

multimodal emotion recognition in conversation (named MM-ERC)
aims to detect the emotion label for each utterance in a given
dialogue by jointly considering auditory, visual, and textual content.
The introduction of audio and video compensates for the limitation
of solely depending on text features and thus enriches the features
used for emotion recognition.

A good number of efforts have been devoted to building effective
MM-ERC models and secured promising performance, where the
core idea is to effectively disentangle different modalities and then
properly fuse them so as to maximize the efficacy of multimodal
features for the task [9, 21, 23, 25, 60]. However, MM-ERC intrinsi-
cally involves two simultaneous key ingredients: multiple feature
modality and conversational contextualization. While the majority
of existing models treat MM-ERC as a typical multimodal classifica-
tion problem, focusing predominantly on either multimodality or
context modeling, the relationship between dialogue context and
multimodal feature consistency is often neglected. By revisiting
the task of MM-ERC, we note that a sound and effective MM-ERC
system should place proper attention to simultaneously modeling
the multimodality and contextualization during the feature disen-
tanglement step and fusion step.

Feature Disentanglement. The purpose of feature disentangle-
ment is to extract the critical features from the original feature
spaces and weaken the influence of irrelevant features, since mul-
timodal inputs often contain features unrelated to emotion recog-
nition (e.g., background video and noisy audio). While existing
models, such as MISA [20] and FDMER [57], propose sophisticated
disentanglement mechanisms for single pieces of utterance, disen-
tangling on the conversational contexts has not been considered.
On the one hand, different modality features within one utterance
should exhibit similarities because, intuitively, multimodal signals
under the same utterance can be semantically consistent in rep-
resenting an identical emotion. On the other hand, features from

different utterances with the same modality share similarities in
modality-specific characteristics (e.g., timbre, facial expression, and
strong wording), which may seem trivial for other modalities but
are useful for recognizing emotions in the specific modality space.
Feature disentanglement without effectively considering both the
modality level and utterance level will inevitably limit further per-
formance improvement of MM-ERC. Unfortunately, to the best of
our knowledge, no existing research explores the disentanglement
under these two aspects, indicating a potential research gap.

Feature Fusion. The disentangled features from the above step
further need to be properly fused, during which reasonable weights
are assigned to maximize the utility of features for emotion pre-
diction. Since different clues in varied modalities serve distinct
contributions to the final prediction, fusing features across modal-
ities has been extensively considered in existing MM-ERC stud-
ies [9, 10, 21, 25], with many sophisticated methods, such as ten-
sor fusion [60], graph convolutional networks [25], gating mech-
anisms [21]. However, no controllable weights were utilized in
previous works, which may risk one modality dominating the mul-
timodal fusion process [45] and potentially limiting the overall
performance. Yet we note that the utterance-level fusion should
also receive sufficient attention. Intuitively, it is less necessary to
further introduce moderate history utterance contexts for predic-
tion when the multimodal signals within the current utterance have
indicated a clear emotion tendency in high consistency. Instead,
aggressively feeding all the historical contexts would rather deteri-
orate the inference. For example, in Figure 1, fully considering all
previous dialogue contexts might lead to an incorrect emotion deter-
mination for the last utterance as “Sadness”. This could happen due
to the negative neighbor context (i.e., the emotion of the second-last
utterance being "Sadness") and the negative atmosphere conveyed
throughout the dialogue. Therefore, properly fusing the features
from both multimodal ones and dialogue contexts is non-trivial.

In light of the above observations, in this work, we develop a
niche targeting solution, i.e., DF-ERC (Disentanglement & Fusion
for Emotion Recognition in Conversation), to fill the gaps and
help achieve higher performance in MM-ERC. As shown in Fig-
ure 2, our system comprises four tiers. First, the raw multimodal
inputs of dialogues are encoded into various feature extractors to
obtain corresponding features. Then, the feature disentanglement
layer performs feature disentanglement, where a Dual-level Dis-
entanglement Mechanism (DDM) is proposed. DDM employs
contrastive learning [14] to push the feature vectors of different
modalities or different utterances away, thereby disentangling fea-
tures at the modality level and utterance level, respectively. Next,
the feature fusion layer performs modality-level and context-level
integration, in which we propose a Contribution-aware Fusion
Mechanism (CFM) and a Context Refusion Mechanism (CRM)
for multimodal and context fusion, respectively. CFM fuses multi-
modal features based on the true classification probabilities [11] of
each modality as their contributions, where such dynamic weight-
ing advances in more controllable feature coordination. In contrast,
CRM flexibly schedules the introduction of historical dialogue con-
texts into the current utterance via a novel emotion-prototype
learning strategy. Specifically, CRM calculates the consistency de-
gree of all modality features within an utterance, where a lower
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Figure 2: Overall framework of the proposed DF-ERCmodel. DDM: Dual-level disentanglement Mechanism; CFM: Contribution-
aware Fusion Mechanism; CRM: Context Refusion Mechanism.

consistency degree triggers the model to bring in more contexts for
reassurance. Finally, the fused overall multimodal and contextual
features are used for the emotion label prediction.

To evaluate the efficacy of our proposed approach, we performed
extensive experiments on two widely-used benchmarks, namely
MELD [47] and IEMOCAP [6]. DF-ERC achieves state-of-the-art
performance on overall results andmost of the fine-grained emotion
categories, demonstrating its effectiveness and stability. Further-
more, we find that DDM was able to effectively disentangle the
features of different modalities or utterances (see Figure 10), and the
disentangled features played a crucial role in the process of feature
fusion (see Figure 6 and Figure 7). Additionally, both CFM and CRM
play vital roles, as demonstrated by ablation studies (see Table 2)
and in-depth analysis (see Section 4.4). Especially noteworthy is
that CRM outperforms the models with no context or full context
engagement, demonstrating its superiority (see Figure 8).

Overall, our contributions are four-fold:
• We revisit the MM-ERC task and, for the first time, propose
DF-ERC to enhance the task by performing disentanglement
and fusion under both the modality and context perspectives.

• Technically, we propose three novel and effective mecha-
nisms to disentangle and fuse both multimodal and contex-
tual features.

• Empirically, our system achieves state-of-the-art performance
on two benchmarks.

• Our proposed methods have great potential for facilitating a
broader range of conversational multimodal applications.

2 RELATEDWORK
Multimodal sentiment analysis [12, 44, 56] aims to extract sen-
timents or emotions using multiple modality resources, such as
text (transcripts), acoustic (audio) and visual modalities. However,
discrepancies across different modalities pose a challenge to the
model. To address this issue, some studies have focused on modality
alignment [52] and minimizing the discrepancies between modal-
ities [39, 59]. Moreover, the style of modality fusion can impact
the model performance, leading to the exploration of effective fu-
sion methods, such as hierarchical mutual information [18, 41],
reconstruct loss [20], and graph neural network [2, 27, 58]. Ad-
ditionally, leveraging contextual information to predict dynamic
emotions is also a popular approach [1, 7, 8, 15]. However, the use
of controllable weights to fuse multimodal features has not been

considered in any of the existing approaches, which can limit their
performance in practice and is one of the main focuses of our study.

Emotion Recognition in Conversation (ERC) [32, 40, 46] is a
subfield of affective computing that aims to recognize emotions
for each utterance within a conversation. To develop the model,
some studies focus on leveraging dialogue-related features, such
as speaker-oriented dialogue modeling[17, 22, 42], context-aware
modeling [50, 63], hierarchical feature modeling [31, 34, 35], and
emotion transition [4, 51]. With the development of multimodal
technology [3, 29, 62], the research scope of ERC has been extended
to multimodal scenarios. Many studies have explored multimodal
fusion methods for the MM-ERC task, such as multimodal dynamic
fusion [21, 36], hierarchical fusion [10], and adaptive modality
drop [9]. Although existing adaptive methods have been proposed,
they neglect some crucial aspects, such as the contribution of each
utterance and the relationship between modality consistency and
the involvement of context, which are the main focuses of our
paper.

3 FRAMEWORK
Given a dialogue 𝐷 = {𝑢0, 𝑢1, · · · , 𝑢𝑛}, where 𝑢𝑖 represents an ut-
terance, the MM-ERC task aims to recognize the emotion type 𝑒𝑖
corresponding to each utterance𝑢𝑖 . In each𝑢𝑖 , there are three kinds
of data, namely text, audio, and video, which are used to predict
𝑒𝑖 . 𝑒𝑖 belongs to a pre-defined set of emotion labels, such as an-
gry, sadness, joy, etc. To approach the task, we introduce a novel
framework, termed DF-ERC, illustrated in Figure 2, which performs
four tiers of propagation for emotion prediction. Subsequently, we
elaborate on the specific techniques employed at each step.

3.1 Multimodal Feature Encoding
Given a dialogue 𝐷 , we first perform feature extraction for each
utterance 𝑢𝑖 simultaneously. In this paper, we follow up-to-date
previous works [10, 51] and employ RoBerta [37] to obtain contextu-
alized text features. Specifically, all the utterances are concatenated
and fed into a pre-trained language model (PLM) following the way
in Span-BERT [30]. The dialogue is represented as

D = [[CLS],𝑤11,𝑤12, · · · ,𝑤1𝑙1 ,𝑤21, · · · ,𝑤𝑛𝑙𝑛 , [SEP]],
𝑯 = PLM(D), (1)

𝒕𝑠𝑖 = MeanPooling(𝑯 [𝑠𝑡𝑎𝑟𝑡𝑖 , 𝑒𝑛𝑑𝑖 ]),
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Figure 3: Dual-level disentanglement mechanism, where 𝒕∗
𝑖
,

𝒂∗
𝑖
, and 𝒗∗

𝑖
denote text, audio, and video features, respectively.

As seen, utterance-level disentanglement pulls the features
of the same utterance close and pushes away the features of
different utterances, while modality-level disentanglement
pulls the features of the same modality close and pushes
away the features of different modalities.

where 𝑤𝑖 𝑗 is the 𝑗-th token in 𝑢𝑖 and 𝑙𝑖 is the length of 𝑢𝑖 , 𝑠𝑡𝑎𝑟𝑡𝑖
and 𝑒𝑛𝑑𝑖 are the indices of the head and tail tokens of 𝑢𝑖 in the
sequence D, and 𝒕𝑠

𝑖
is the text feature for utterance 𝑢𝑖 .

For audio and visual content, following the approach described in
previous work [21, 25], we adopt OpenSmile [49] and DenseNet [26]
pre-trained on the Facial Expression Recognition Plus (FER+) cor-
pus [5] as feature extractors. Finally, we obtain an audio feature 𝒂𝑠

𝑖
and a visual feature 𝒗𝑠

𝑖
for each utterance 𝑢𝑖 .

3.2 Dual-level Disentanglement Mechanism
(DDM)

It should be noted that directly utilizing raw multimodal features
for emotion analysis is problematic because they are entangled and
noisy due to the unconstrained extraction process. Thus, it is neces-
sary to disentangle multimodal features in order to refine them and
boost the performance of downstream tasks. In this paper, we pro-
pose a dual-level disentanglement mechanism to disentangle raw
features in both utterance and modality levels, as illustrated in Fig-
ure 3. At the modality level, we apply an MLP layer to the features
of different modalities to derive modality-level representations:

𝒕𝑚𝑖 /𝒂𝑚𝑖 /𝒗𝑚𝑖 = MLP𝑚
𝑡/𝑎/𝑣 (𝒕

𝑠
𝑖 /𝒂

𝑠
𝑖 /𝒗

𝑠
𝑖 ) . (2)

Next, a list 𝑹𝑚 , containing the items 𝒕𝑚
𝑖
, 𝒂𝑚

𝑖
, 𝒗𝑚

𝑖
(𝑖 ∈ [1, 𝑛]), is

created as follows: 𝑹𝑚 = [𝒕𝑚1 , 𝒂𝑚1 , 𝒗
𝑚
1 , 𝒕𝑚2 , ..., 𝒕𝑚𝑛 , 𝒂𝑚𝑛 , 𝒗𝑚𝑛 ]. We then

apply contrastive learning to these features in order to draw features
of the same modality closer to each other and push features of
different modalities away, formalized as below:

L𝑚
𝑐𝑙

= −
𝑛∑︁
𝑖

∑︁
𝒉𝑘 ∈𝑹𝑚

𝑖+

log
𝑒𝑠𝑖𝑚 (𝒉𝑖 ,𝒉𝑘 )/𝜏∑3𝑛
𝑗 !=𝑖 𝑒

sim(𝒉𝑖 ,𝒉 𝑗 )/𝜏
, (3)

where 𝒉𝑖 is the 𝑖-th item in 𝑹𝑚 . Note that 𝒉𝑘 ∈ 𝑹𝑚
𝑖+ = {𝒙 𝑗 | 𝑗 ≡

𝑖 (mod 3), 1 < 𝑗 ≤ 3𝑛} has the same modality as 𝒉𝑖 , which can be
considered as positive instances. Here 𝜏 is a temperature parameter,
and 𝑠𝑖𝑚(𝒉𝑖 ,𝒉𝑘 ) denotes the cosine similarity between two vectors.
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𝑖
, 𝜔𝑎

𝑖
and

𝜔𝑣
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are the contributions of different modalities (see Eq. (12)),

which are given by three contribution prediction networks
MLP𝑝𝑚 (𝑚 ∈ {𝑡, 𝑎, 𝑣}). These networks are trained as students
based on true classification probabilities (TCPs) given by
three teacher networksMLP𝑞𝑚 .

At the utterance level, contrastive learning is exploited in a
similar manner, clustering the multimodal features of the same
utterance and disentangling the features of different utterances,
formulated as below:

𝒕𝑢𝑖 /𝒂
𝑢
𝑖 /𝒗

𝑢
𝑖 = MLP𝑢

𝑡/𝑎/𝑣 (𝒕
𝑠
𝑖 /𝒂

𝑠
𝑖 /𝒗

𝑠
𝑖 ), (4)

L𝑢
𝑐𝑙

= −
𝑛∑︁
𝑖

∑︁
𝒉𝑘 ∈𝑹𝑢

𝑖+

log
𝑒𝑠𝑖𝑚 (𝒉𝑖 ,𝒉𝑘 )/𝜏∑3𝑛
𝑗 !=𝑖 𝑒

sim(𝒉𝑖 ,𝒉 𝑗 )/𝜏
, (5)

where 𝒉𝑖 ∈ 𝑹𝑢 = [𝒕𝑢1 , 𝒂
𝑢
1 , 𝒗

𝑢
1 , 𝒕

𝑢
2 , · · · , 𝒕

𝑢
𝑛 , 𝒂

𝑢
𝑛 , 𝒗

𝑢
𝑛 ], and 𝒉𝑘 ∈ 𝑹𝑢

𝑖+ =

{𝒙 𝑗 | ⌊𝑖/3⌋ = ⌊ 𝑗/3⌋, 0 < 𝑗 ≤ 3𝑛} denotes the feature in the same
utterance with 𝒉𝑖 . ⌊𝑥⌋ is the round down symbol. Finally, we use
residual connections to concatenate raw features with disentangle
features, and two loss functions for contrastive learning are also
combined:

𝒕𝑖 = [𝒕𝑠𝑖 ; 𝒕
𝑚
𝑖 ; 𝒕𝑢𝑖 ], (6)

𝒂𝑖 = [𝒂𝑠𝑖 ; 𝒂
𝑚
𝑖 ; 𝒂𝑢𝑖 ], (7)

𝒗𝑖 = [𝒗𝑠𝑖 ; 𝒗
𝑚
𝑖 ; 𝒗𝑢𝑖 ], (8)

L𝑐𝑙 = L𝑚
𝑐𝑙

+ L𝑢
𝑐𝑙
. (9)

3.3 Contribution-aware Fusion Mechanism
(CFM)

As different modalities have different importance for the final
emotion label prediction, they should be assigned different fusion
weights in the modality fusion process. Here we adopt a contribute-
aware adaptive fusion module to assign the weight of each modality,
which can give a dynamic weight according to their prediction per-
formance, as illustrated in Figure 4. Specifically, we apply a classifier
on the representation of each modality and obtain the true classifi-
cation probability (TCP) [11, 19] as their contribution in the fusion
process, which can be obtained via:

𝒛𝑡/𝑎/𝑣
𝑖

= Softmax(MLP𝑞
𝑡/𝑎/𝑣 (𝒕𝑖/𝒂𝑖/𝒗𝑖 )), (10)

TCP𝑚𝑖 = (𝒛𝑚𝑖 )𝐼 ∗
𝑖
,𝑚 ∈ {𝑡, 𝑎, 𝑣}, (11)

where 𝒛𝑚
𝑖

is the prediction probability, and 𝐼∗
𝑖
is the index of golden

emotion label for 𝑢𝑖 . Obviously, TCPmi ∈ (0, 1) denotes how likely
the prediction result is right. A larger TCP value indicates the
feature representation 𝒕𝑖/𝒂𝑖/𝒗𝑖 can yield a correct prediction result
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and verse visa. Therefore, we plan to adopt TCP to represent the
fusion weight for each modality. However, a significant challenge
arises during the evaluation phase as the true emotion label is
unknown, making it impossible to directly utilize TCP as the weight.
To keep the consistency of training and test processes, we adopt a
predicted value, which is trained to be close to TCP, as the weight
of each modality:

𝜔
𝑡/𝑎/𝑣
𝑖

= Sigmoid(MLP𝑝
𝑡/𝑎/𝑣 (𝒕𝑖/𝒂𝑖/𝒗𝑖 )). (12)

To achieve the goal that we mentioned before, the following loss
functions are used:

L𝑚
𝑝 = −

𝑛∑︁
𝑖=1

log(𝒛𝑚𝑖 (𝐼∗𝑖 )), (13)

L𝑚
𝑞 =

𝑛∑︁
𝑖=1

MSE (TCPmi , 𝜔
m
i ), (14)

L𝑐𝑜𝑛 =
∑︁

𝑚∈{𝑡,𝑎,𝑣}
(L𝑚

𝑝 + L𝑚
𝑞 ), (15)

where, L𝑚
𝑝 represents the prediction label loss and L𝑚

𝑞 is the pre-
diction TCP loss. Finally, the fused multimodal features can be
formulated as:

𝒉
𝑓

𝑖
= 𝜔𝑡

𝑖 𝒕𝑖 + 𝜔𝑎
𝑖 𝒂𝑖 + 𝜔𝑣

𝑖 𝒗𝑖 . (16)

3.4 Context Refusion Mechanism (CRM)
Except for fusing multimodal features, contextual feature fusion
is also important, especially when multimodal features contradict
each other regarding emotion prediction. Therefore, we compute
the agreements among multimodal features as the weights to de-
termine how many contextual features should be incorporated.
However, since multimodal features are not aligned according to
emotions, it may be inaccurate to directly compute the similarity
based on multimodal features. To solve this problem, we propose a
prototype-based alignment module (as shown in Figure 5) to learn
the emotion-specific representations of multimodal features. Specif-
ically, in each training epoch, we maintain a prototype vector for
each kind of emotion:

𝒙𝑡/𝑎/𝑣
𝑖

= MLP𝑟
𝑡/𝑎/𝑣 (𝒕𝑖/𝒂𝑖/𝒗𝑖 ), (17)

𝑅𝑘𝑟 =
1

|𝑁𝑘
𝑟 |

(𝑅𝑘𝑟−1 · 𝑁
𝑘
𝑟−1 +

∑︁
𝑚∈{𝑡,𝑎,𝑣}

∑︁
I∗𝑖 =𝑘

𝒙𝑚𝑖 ), (18)

where 𝑅𝑘𝑡 represents the prototype of the 𝑘-th emotion in the 𝑡-th
epoch, 𝑁𝑘

𝑟 = 𝑁𝑘
𝑟−1 + 3 ·∑𝑛

𝑖 1𝐼 ∗
𝑖
==𝑘 is the size of the 𝑘-th emotion in

the 𝑟 -th round. The prototype vector is updated in each iteration
based on the previous values and the multimodal features in the

current epoch. To ensure that each feature is close to its prototype
vector, we use a margin-based loss function based on the mean
squared error (MSE):

L𝑠𝑖𝑚 =
1
3𝑛

𝑛∑︁
𝑖=1

∑︁
𝑚,𝑘

∑︁
𝐼 ∗
𝑖
==𝑘

𝑚𝑎𝑥 (MSE(𝑅𝑘𝑟 , 𝒙𝑚𝑖 ) − 𝛽, 0), (19)

where L𝑠𝑖𝑚 denotes the loss function and 𝛽 represents the margin.
If the MSE between a feature vector and its corresponding proto-
type vector is less than the margin, the model will not be updated.
In other words, the feature vector is expected to be close to the pro-
totype vector but not necessarily identical to it, in order to avoid all
feature vectors becoming indistinguishable. Once the multimodal
feature vectors are aligned, the comprehensive similarity between
different modalities in the utterance 𝑢𝑖 can be computed as:

𝜓𝑖 =
1
3
(cos(𝒙𝑡𝑖 , 𝒙

𝑎
𝑖 ) + cos(𝒙𝑡𝑖 , 𝒙

𝑣
𝑖 ) + cos(𝒙𝑎𝑖 , 𝒙

𝑣
𝑖 )) . (20)

In the context fusion stage, we first utilize a bidirectional long
short-term memory (Bi-LSTM) to generate contextual representa-
tions of the utterances as follows:

𝒉𝑐1,𝒉
𝑐
2, · · · ,𝒉

𝑐
𝑛 = BiLSTM( [𝒉𝑓1 ,𝒉

𝑓

2 , · · · ,𝒉
𝑓
𝑛]) . (21)

We then concatenate fused features with context-aware features as
follows1:

𝒉𝑒𝑖 = [𝒉𝑓
𝑖
,𝒉𝑐𝑖 · (1 −𝜓𝑖 )], (22)

where 𝒉𝑒
𝑖
represents the final representation of each utterance that

is fused with multimodal and contextual information.

3.5 Prediction and Learning
Then, the fused representation 𝒉𝑒

𝑖
is used for emotion recognition,

which is performed as follows:

𝒚𝑖 = Softmax(MLP𝑐 (𝒉𝑒𝑖 )), (23)

where 𝒚𝑖 represents the probability of predicted emotion. We use
the cross-entropy loss function for training, which is defined as
follows:

L𝑒𝑚𝑜 = −
𝑛∑︁
𝑖=1

log𝒚𝑖,I∗
𝑖
, (24)

where I∗
𝑖
denotes the golden label index of the utterance 𝑢𝑖 . Dur-

ing the learning stage, our training loss functions consist of the
following parts:

L = 𝛼1L𝑐𝑙 + 𝛼2L𝑐𝑜𝑛 + 𝛼3L𝑠𝑖𝑚 + L𝑒𝑚𝑜 , (25)

where 𝛼1–3 ∈ (0, 1] are hyper-parameters.

4 EXPERIMENTS75
4.1 Implementation Details

Datasets. We conducted experiments using two publicly available
MM-ERC datasets, namely MELD [47] and IEMOCAP [6]. Both of
which include text, audio, and video modalities. The data split used
in our experiments follows previous work [21, 25], and the detailed
corpus statistics are presented in Section A.1 of the Appendix.
1We also conducted an experiment by directly multiplying (1 −𝜓𝑖 ) with each 𝒉𝑓

∗ in
Eq. (21) instead of 𝒉𝑐

𝑖
in Eq. (22), and obtained a similar result. Therefore, we adopted

the more concise fusion approach as shown in Eq. (22).
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Table 1: Comparisons with the baselines. ‘W-F1’ refers to weighted F1 scores. The results with
:::::::
waveline denote the best baseline

results. The results with ★ denote significance at 𝑝 < 0.01 compared with the best baseline results. The ‘-’ symbol denotes that
the corresponding item is not reported in the original paper. Furthermore, the term ’KG’ indicates the model is augmented
with a knowledge graph.

IEMOCAP MELD

Input Model Embedding Hap Sad Neut Ang Exci Frus Acc W-F1 Neut Surp Sad Joy Ang Acc W-F1

Text

DiaGCN [17] Glove 51.57 80.48 57.69 53.95 72.81 57.33 63.22 62.89 75.97 46.05 19.60 51.20 40.83 58.62 56.36
HiTrans [34] Bert-Base - - - - - - - 64.50 - - - - - - 61.94
RGAT [28] Bert-Base - - - - - - - 65.22 - - - - - - 60.91
TUCORE [31] Robe-Large - - - - - - - - - - - - - - 65.36
DiaCRN [22] Glove 53.23 83.37 62.96 66.09 75.4 66.07 67.16 67.21 77.01 50.10 26.63 52.77 45.15 61.11 58.67
EmoFlow [51] Robe-Large - - - - - - - - - - - - - - 66.50

T+KG

TODKAT [64] Robe-Large - - - - - - - 61.33 - - - - - - 65.47
CoMpM [33] Robe-Large - - - - - - - 69.46 - - - - - - 66.52
COMSMIC [16] Robe-Large - - - - - - - 65.28 - - - - - - 65.21
SKSEC [53] Robe-Large - - - - - - - 66.47 - - - - - - 66.21

MM

TFN [60] Glove 37.26 65.21 51.03 54.64 58.75 56.98 55.02 55.13 77.43 47.89 18.06 51.28 44.15 60.77 57.74
MFN [61] Glove 48.19 73.41 56.28 63.04 64.11 61.82 61.24 61.60 77.27 48.29 23.24 52.63 41.32 60.80 57.80
DiaRNN [42] Word2vec 32.2 80.26 57.89 62.82 73.87 59.76 63.52 62.89 76.97 47.69 20.41 50.92 45.52 60.31 57.66
MMGCN [25] FastText 45.14 77.16 66.36 68.82 74.71 61.04 66.36 66.26 76.33 48.15 26.74 53.02 46.09 60.42 58.31
MetaDrop [9] Robe-Large - - - - - - 69.38 69.59 - - - - - 66.63 66.30
DiaTRM [43] Bert-Base - - - - - - 69.50 69.70 - - - - - 65.70 63.50
MM-DFN [21] FastText 42.22 78.98 66.42 69.77 75.56 66.33 68.21 68.18 77.76 50.69 22.93 54.78 47.82 62.49 59.46
M2FNet [10] Robe-Large𝑒 60.00 82.11 65.88 68.21 72.6 68.31 69.86 69.69 80.06 58.66 47.03 65.5 55.25

::::
67.85

::::
66.71

UniMSE [23] T5-Base - - - - - -
::::
70.56

::::
70.66 - - - - 65.09 65.51

Our DF-ERC Robe-Large 56.37 84.36 71.13 67.46 79.11 66.23 71.84★ 71.75★ 80.17 60.27 43.89 65.93 55.50 68.28★ 67.03★

Settings. Following previous work [9, 10, 51], we adopt RoBERTa-
large [37] as our PLM encoder, with a hidden state dimension of
1024. For the MELD dataset, we empirically set hyperparameters
𝛼1−3 to 0.3, 0.8, and 0.3, respectively. For the IEMOCAP dataset, we
set the values to 0.2, 0.9, and 1.0. More details about the hyperpa-
rameter settings can be found in Section A.2 of the Appendix. We
determine all hyperparameters through development experiments
on the validation sets. We report the final results as an average over
five random seeds, and we consider the evaluation score significant
when the p-value is less than 0.01.

Baselines. We compare the performance of our DF-ERC model
with several strong baselines, including text-based models, text +
knowledge-enhanced models, and multimodal-based models, which
are listed in Table 1. We also present the pre-trained embedding
weight of each model, most of which use Robert-Large to encode
the text content. We present the original results for each baseline,
except TODKAT [64] where we use updated results from the paper’s
repository.2. The training datasets in UniMSE [23] are merged from
three corpora, possibly contributing to improved performance.

4.2 Main Results
Table 1 presents the experimental results for two benchmark datasets.
When compared to text-based models, DF-ERC significantly im-
proves performance scores. Specifically, for the MELD dataset, DF-
ERC improves accuracy (Acc) and weighted F1 (W-F1) scores by
7.17 and 0.53 percentage points (hereafter, ‘points’) as compared to

2https://github.com/something678/TodKat

the best-performing baseline, respectively. Similarly, for the IEMO-
CAP dataset, DF-ERC improves Acc and W-F1 scores by 4.68 and
4.54 points, respectively. These findings underscore the efficacy of
incorporating multimodal information and the efficient integration
of multimodal features.

Interestingly, without utilizing any external knowledge, DF-ERC
still surpasses models that rely on external knowledge, such as
TODKAT, CoMpM, COMSMIC, and SKSEC. The table demonstrates
that DF-ERC improves the W-F1 scores by 0.51 and 2.29 points
for the MELD and IEMOCAP datasets, respectively. These find-
ings suggest that multimodal information effectively compensates
for the absence of external knowledge, thus enhancing emotion
recognition performance.

Additionally, DF-ERC achieves the best performance among all
multimodal-based models. On the MELD dataset, DF-ERC improves
Acc and W-F1 scores by 0.43 and 0.32 points, respectively. On the
IEMOCAP dataset, the improvements are 1.28 and 1.09 points. These
results indicate that DF-ERC is adept at discerning the differences
and weighted contributions of each type of multimodal feature.
Consequently, DF-ERC optimally utilizes multimodal features to
bolster multimodal emotion recognition in conversation.

Lastly, we present the performance scores for each type of emo-
tion, revealing that DF-ERC achieves the best performance for most
emotions, thereby demonstrating the robustness of our model. It
also contributes to the superior overall performance of our model.

4.3 Ablation Studies
Ablation studies for DDM, CFM, and CRM. As shown in Ta-
ble 2, we observe that upon the removal of the DDM, utterance-level

https://github.com/something678/TodKat
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Table 2: Ablation studies for DDM, CFM, and CRM, where
’+Att’ denotes the application of a self-attention mechanism
for feature fusion, where ‘full’ and ‘zero’ means the weight
of contextual features (Eq. (22)), i.e., using full contextual fea-
tures or none of them. The notions ‘Utterance’ and ‘Modality’
correspond to the removal of utterance-level and modality-
level contrastive learning, respectively.

Model MELD IEMOCAP

Acc W-F1 Acc W-F1
DF-ERC 68.28 67.03 71.84 71.75
- DDM 66.36(↓ 1.92) 65.59(↓ 1.44) 69.99(↓ 1.85) 69.81(↓ 1.94)

- Utterance 66.91(↓ 1.37) 65.92(↓ 1.11) 71.45(↓ 0.39) 70.55(↓ 1.20)

- Modality 67.78(↓ 0.50) 66.48(↓ 0.55) 70.95(↓ 0.89) 70.94(↓ 0.81)

- CFM 66.51(↓ 1.77) 65.49(↓ 1.54) 69.69(↓ 2.15) 69.56(↓ 2.19)

+ Att 65.63(↓ 2.65) 65.87(↓ 1.16) 71.41(↓ 0.43) 71.40(↓ 0.35)

- CRM(full) 64.98(↓ 3.30) 65.07(↓ 1.96) 69.56(↓ 2.28) 69.42(↓ 2.33)

- CRM(zero) 65.06(↓ 3.22) 65.09(↓ 1.94) 69.75(↓ 2.09) 69.71(↓ 2.04)

+ Att 66.70(↓ 1.58) 65.97(↓ 1.06) 70.06(↓ 1.78) 69.34(↓ 2.41)

Table 3: Ablation studies for different modalities, where T,
A, and V denote Text, Audio, and Video, respectively.

Model MELD IEMOCAP

Acc W-F1 Acc W-F1
DF-ERC(T+A+V) 68.28 67.03 71.84 71.75
T 65.17 64.54 65.13 65.46
A 43.83 41.72 41.47 38.62
V 46.05 36.65 32.84 22.70
T+V 65.33 64.54 70.61 69.49
T+V 65.10 64.95 66.17 65.89
A+V 48.70 45.00 55.70 55.07

disentanglement, and modality-level disentanglement, there is a
decrease in the model’s performance on both datasets, indicating
feature disentanglement is crucial for emotion prediction. Addition-
ally, the model’s performance drops by around one point without
the CFM. While an attention-based mechanism does offer some
assistance, it remains inadequate when compared with the CFM.
We attribute this to the fact that different modalities make varying
contributions, and the use of a contribution-aware approach allows
for the adaptive learning of weights for different modality features,
resulting in a better fusion of multimodal features.

Last but not least, CRM also provides assistance in emotion
recognition. After removing the CRM module, we directly set the
context weight to 1 (full weight) or 0 (zero weight), signifying the
introduction of all or no context information. We observe that these
static weights impair themodel’s performance, resulting in a drop of
more than 2 points on both the MELD and IEMOCAP datasets. This
finding suggests that context representations are not inherently
useful or useless. We ultimately achieve better performance using
the CRM to determine the weights of the context.

Ablation studies for modalities. As demonstrated in Table 3, our
initial findings reveal that the text-based model outperforms other

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

60

65

70

75

Similarity Percentile Range

F
1
sc
or
e(
%
)

DF-ERC W/o u-DDM

20

30

40

50

60

S
im

il
ar
it
y
(N

o
rm

al
)DF-ERC W/o u-DDM

Figure 6: Influence of utterance-level disentanglement (u-
DDM) on similarities between modalities and final perfor-
mance. The x-axis denotes the similarity percentile range,
dividing utterances into five groups based on their corre-
sponding similarity values(see𝜓𝑖 in Eq. (20)).

modality-based models, providing evidence of the dominance of
text as a modality, which is consistent with previous research find-
ings [20]. However, compared to state-of-the-art text-based models
in Table 1, our text-basedmodel exhibits slightly lower performance.
This is because DF-ERC primarily focuses onmultimodal inputs and
lacks complex structures specifically tailored for unimodal inputs,
which slightly limits its performance. Nonetheless, incorporating
audio and video features into the model with our efficient fusion
techniques (i.e., CFM and CRM) leads to a significant improvement
in performance.

4.4 In-depth Analysis
To further investigate the effectiveness of DF-ERC, we conduct
in-depth analyses to answer the following questions:

Q1: How does utterance-level feature disentanglement in-
fluence the feature fusion process?We analyzed the influence
of utterance-level disentanglement on context weight and final
performance. As shown in Figure 6, we divided all instances into
five groups based on the similarities between modalities, sorted in
ascending order. From the similarity curve, we found that the use of
utterance-level disentanglement can significantly improve the simi-
larities between modalities within an utterance, demonstrating that
it effectively captures utterance-level information. Furthermore,
we observed that utterance-level disentanglement is more effective
in the case of utterances with a lower similarity between modali-
ties (demonstrated by the larger F1 score gap). This is because low
similarity often indicates that the features of the utterance are not
fully exploited, and adding utterance-level disentanglement brings
the utterance-level distance closer, thus improving similarity to a
greater extent. Finally, considering the F1 metric, utterance-level
disentanglement contributes more to the performance of utterances
with low similarities, indicating that it can improve the final per-
formance by leveraging utterance-level similarity.

Q2: How does modality-level feature disentanglement in-
fluence the feature fusion process? We analyzed the effect
of modality-level feature disentanglement on the weight of each
modality and the final F1 score. From the curves depicted in Figure 7,
it is evident that integrating modality disentanglement resulted in
increased weights for the video and audio modalities, especially in
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Figure 7: The influence of modality-level disentanglement
(m-DDM) on the weight of different modalities and the over-
all performance. The x-axis represents the utterances sorted
by their cross-entropy values in ascending order and divided
into four groups based on percentiles (25th, 50th, and 75th
percentiles). The dual y-axis shows the average weight of
each modality within each group (left) and the correspond-
ing F1 score (right). The equation for calculating the weight
of each modality within an utterance is given by Eq. (12).

utterances with higher cross-entropy values. This can be attributed
to the fact that modality disentanglement enables each modality’s
unique characteristics to be fully exploited, resulting in a subtle
enhancement of weaker modalities, such as video and audio. More-
over, this increase of weight for weaker modalities is more evident
in utterances with suboptimal prediction results, where the text
modality does not perform well. We observed the most substantial
improvement in the F1 score for utterances with poorer predic-
tion results, approximately 5 points improvement for those with
cross-entropy ranking percentile > 0.75. This suggests that the inte-
gration of modality-level feature disentanglement can lead to more
accurate predictions in challenging situations.

Q3: Do the CRM context weights decided by modality con-
sistency really work? To verify the effectiveness of the modality
similarity comparison module, we study the relationship between
prediction performance andmodality similarity. Additionally, we in-
clude the performance under full weight (incorporating all context
representations) and zero weight (excluding all context representa-
tions). Figure 8 displays these results, with the x-axis representing
the instance’s similarity score ranking among all instances, while
larger x values denote higher similarity. Firstly, we find that as
modality similarity improves, the overall performance of the model
also increases gradually. This is because the more similar the three
modalities are, the more consistency they exhibit in emotion recog-
nition, resulting in higher prediction scores. Secondly, when com-
paring full weight to zero weight, we observe that for utterances
with relatively small similarities, the performance of full weight is
superior to that of zero weight. This is because when the discrep-
ancy between different modalities within an utterance is substantial,
introducing context utterance representations can help to better
recognize emotions. Conversely, as similarity increases and the
discrepancy between different modalities diminishes, context repre-
sentations interfere with emotional judgments. Thus, for the latter
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Figure 8: Correlation between performance and modality
consistency, where a larger value of the x-axis represents a
higher modality consistency. We use similarity to represent
consistency, where a higher similarity of different modalities
indicates a higher consistency. CRM: Our proposed Context
Refusion Mechanism dynamically determines how much
contextual features are used based on modality consistency;
Zero: using no contextual features; Full: using 100% contex-
tual features.

half of the figures, the performance score of zero weight outper-
forms that of full weight. Finally, regardless of whether full weight
or zero weight is used, both approaches have limitations in that
they can not be flexibly adjusted as the consistency of modalities.
Our CRM can adjust context weight according to the consistency
between modalities, achieving the best performance in all instances
and verifying that DF-ERC effectively captures the relationship
between multimodal features and context features.

5 CONCLUSION
In this work, we introduce a novel MM-ERC system that emphasizes
both feature disentanglement and fusion while taking into account
both multimodalities and conversational contexts. Our proposed
Dual-level Disentanglement Mechanism (DDM) successfully dis-
entangles modality- and utterance-level features using contrastive
learning, while the Contribution-aware Fusion Mechanism (CFM)
and Context Refusion Mechanism (CRM) fuse multimodal and con-
textual features effectively. Extensive experiments on two public
datasets demonstrate that DF-ERC achieves the best performance
compared with 19 models. Ablation studies and in-depth analy-
ses substantiate the rationality of our approaches for controllable
fusing multimodal and context features. Intuitively, our proposed
approaches are not limited to emotion recognition in dialogs, and
we will evaluate them on other multimodal tasks in the future.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and De-
velopment Program of China (Grant No. 2022YFB3103602, Grant
No. 2017YFC1200500), the National Natural Science Foundation
of China (Grant No. 62176187), China Scholarship Council (CSC),
NExT Research Center, and the Research Foundation of Ministry
of Education of China (Grant No. 18JZD015).



Revisiting Conversational Emotion Recognition MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

REFERENCES
[1] Md Shad Akhtar, Dushyant Chauhan, Deepanway Ghosal, Soujanya Poria, Asif

Ekbal, and Pushpak Bhattacharyya. 2019. Multi-task Learning for Multi-modal
Emotion Recognition and Sentiment Analysis. In Proceedings of NAACL-HLT.
Association for Computational Linguistics, Minneapolis, Minnesota, 370–379.
https://doi.org/10.18653/v1/N19-1034

[2] AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cambria, and Louis-
Philippe Morency. 2018. Multimodal Language Analysis in the Wild: CMU-
MOSEI Dataset and Interpretable Dynamic Fusion Graph. In Proceedings of ACL.
Association for Computational Linguistics, Melbourne, Australia, 2236–2246.
https://doi.org/10.18653/v1/P18-1208

[3] Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency. 2019. Multi-
modal Machine Learning: A Survey and Taxonomy. IEEE TPAMI 41, 2 (feb 2019),
423–443. https://doi.org/10.1109/TPAMI.2018.2798607

[4] Keshav Bansal, Harsh Agarwal, Abhinav Joshi, and Ashutosh Modi. 2022. Shapes
of Emotions: Multimodal Emotion Recognition in Conversations via Emotion
Shifts. In Workshop on COLING. International Conference on Computational
Linguistics, Virtual, 44–56. https://aclanthology.org/2022.mmmpie-1.6

[5] Emad Barsoum, Cha Zhang, Cristian Canton-Ferrer, and Zhengyou Zhang. 2016.
Training deep networks for facial expression recognition with crowd-sourced
label distribution. In Proceedings of ICMI. ACM, New York, NY, USA, 279–283.
https://doi.org/10.1145/2993148.2993165

[6] Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower,
Samuel Kim, Jeannette N. Chang, Sungbok Lee, and Shrikanth S. Narayanan. 2008.
IEMOCAP: interactive emotional dyadic motion capture database. Lang. Resour.
Evaluation 42, 4 (2008), 335–359. https://doi.org/10.1007/s10579-008-9076-6

[7] Dushyant Singh Chauhan, Md Shad Akhtar, Asif Ekbal, and Pushpak Bhat-
tacharyya. 2019. Context-aware Interactive Attention for Multi-modal Sentiment
and Emotion Analysis. In Proceedings of EMNLP. Association for Computational
Linguistics, Hong Kong, China, 5647–5657. https://doi.org/10.18653/v1/D19-1566

[8] Feiyang Chen, Ziqian Luo, Yanyan Xu, and Dengfeng Ke. 2020. Complemen-
tary Fusion of Multi-Features and Multi-Modalities in Sentiment Analysis. In
Proceedings of Workshop Affective Content Analysis with AAAI (CEUR Workshop
Proceedings, Vol. 2614). CEUR-WS.org, New York, USA, 82–99. https://ceur-
ws.org/Vol-2614/AffCon20_session1_complementary.pdf

[9] Feiyu Chen, Zhengxiao Sun, Deqiang Ouyang, Xueliang Liu, and Jie Shao. 2021.
Learning What and When to Drop: Adaptive Multimodal and Contextual Dy-
namics for Emotion Recognition in Conversation. In Proceedings of ACM MM.
ACM, Virtual Event, China, 1064–1073. https://doi.org/10.1145/3474085.3475661

[10] Vishal Chudasama, Purbayan Kar, Ashish Gudmalwar, Nirmesh Shah, Pankaj
Wasnik, and Naoyuki Onoe. 2022. M2FNet: Multi-modal Fusion Network for
Emotion Recognition in Conversation. In IEEE/CVF CVPR Workshops. IEEE, New
Orleans, LA, USA, 4651–4660. https://doi.org/10.1109/CVPRW56347.2022.00511

[11] Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu Cord,
and Patrick Pérez. 2019. Addressing Failure Prediction by Learning
Model Confidence. In Proceedings of NeurIPS. IEEE, Vancouver, BC,
Canada, 2898–2909. https://proceedings.neurips.cc/paper/2019/hash/
757f843a169cc678064d9530d12a1881-Abstract.html

[12] Ringki Das and Thoudam Doren Singh. 2023. Multimodal Sentiment Analysis:
A Survey of Methods, Trends and Challenges. ACM Comput. Surv. 55, 13s (mar
2023), 38 pages. https://doi.org/10.1145/3586075

[13] Jun Gao, Yuhan Liu, Haolin Deng, Wei Wang, Yu Cao, Jiachen Du, and Ruifeng
Xu. 2021. Improving Empathetic Response Generation by Recognizing Emotion
Cause in Conversations. In Findings of EMNLP. Association for Computational
Linguistics, Punta Cana, Dominican Republic, 807–819. https://doi.org/10.18653/
v1/2021.findings-emnlp.70

[14] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Contrastive
Learning of Sentence Embeddings. In Proceedings of EMNLP. Association for
Computational Linguistics, Virtual Event / Punta Cana, Dominican Republic,
6894–6910. https://doi.org/10.18653/v1/2021.emnlp-main.552

[15] Deepanway Ghosal, Md Shad Akhtar, Dushyant Chauhan, Soujanya Poria, Asif
Ekbal, and Pushpak Bhattacharyya. 2018. Contextual Inter-modal Attention
for Multi-modal Sentiment Analysis. In Proceedings of EMNLP. Association for
Computational Linguistics, Brussels, Belgium, 3454–3466. https://doi.org/10.
18653/v1/D18-1382

[16] Deepanway Ghosal, Navonil Majumder, Alexander Gelbukh, Rada Mihalcea, and
Soujanya Poria. 2020. COSMIC: COmmonSense knowledge for eMotion Identifica-
tion in Conversations. In Findings of EMNLP. Association for Computational Lin-
guistics, Online, 2470–2481. https://doi.org/10.18653/v1/2020.findings-emnlp.224

[17] Deepanway Ghosal, Navonil Majumder, Soujanya Poria, Niyati Chhaya, and
Alexander Gelbukh. 2019. DialogueGCN: A Graph Convolutional Neural Network
for Emotion Recognition in Conversation. In Proceedings of EMNLP-IJCNLP.
Association for Computational Linguistics, Hong Kong, China, 154–164. https:
//doi.org/10.18653/v1/D19-1015

[18] Wei Han, Hui Chen, and Soujanya Poria. 2021. Improving Multimodal Fusion
with Hierarchical Mutual Information Maximization for Multimodal Sentiment
Analysis. In Proceedings of EMNLP. Association for Computational Linguistics,
Online and Punta Cana, Dominican Republic, 9180–9192. https://doi.org/10.

18653/v1/2021.emnlp-main.723
[19] Zongbo Han, Fan Yang, Junzhou Huang, Changqing Zhang, and Jianhua Yao.

2022. Multimodal Dynamics: Dynamical Fusion for Trustworthy Multimodal
Classification. In IEEE/CVF CVPR. IEEE, New Orleans, LA, USA, 20675–20685.
https://doi.org/10.1109/CVPR52688.2022.02005

[20] Devamanyu Hazarika, Roger Zimmermann, and Soujanya Poria. 2020. MISA:
Modality-Invariant and -Specific Representations for Multimodal Sentiment Anal-
ysis. In Proceedings of ACM MM. ACM, Virtual Event / Seattle, WA, USA, 1122–
1131. https://doi.org/10.1145/3394171.3413678

[21] Dou Hu, Xiaolong Hou, Lingwei Wei, Lian-Xin Jiang, and Yang Mo. 2022. MM-
DFN: Multimodal Dynamic Fusion Network for Emotion Recognition in Con-
versations. In IEEE ICASSP. IEEE, Virtual and Singapore, 7037–7041. https:
//doi.org/10.1109/ICASSP43922.2022.9747397

[22] Dou Hu, Lingwei Wei, and Xiaoyong Huai. 2021. DialogueCRN: Contextual
Reasoning Networks for Emotion Recognition in Conversations. In Proceedings
of ACL. Association for Computational Linguistics, Online, 7042–7052. https:
//doi.org/10.18653/v1/2021.acl-long.547

[23] Guimin Hu, Ting-En Lin, Yi Zhao, Guangming Lu, Yuchuan Wu, and Yongbin Li.
2022. UniMSE: Towards Unified Multimodal Sentiment Analysis and Emotion
Recognition. In Proceedings of EMNLP. Association for Computational Linguistics,
Abu Dhabi, United Arab Emirates, 7837–7851. https://aclanthology.org/2022.
emnlp-main.534

[24] Jiaxiong Hu, Yun Huang, Xiaozhu Hu, and Yingqing Xu. 2023. The Acoustically
Emotion-Aware Conversational Agent With Speech Emotion Recognition and
Empathetic Responses. IEEE Trans. Affect. Comput. 14, 1 (2023), 17–30. https:
//doi.org/10.1109/TAFFC.2022.3205919

[25] Jingwen Hu, Yuchen Liu, Jinming Zhao, and Qin Jin. 2021. MMGCN: Multi-
modal Fusion via Deep Graph Convolution Network for Emotion Recognition in
Conversation. In Proceedings of ACL. Association for Computational Linguistics,
Online, 5666–5675. https://doi.org/10.18653/v1/2021.acl-long.440

[26] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
2017. Densely Connected Convolutional Networks. In IEEE Conference on CVPR.
IEEE Computer Society, Honolulu, HI, USA, 2261–2269. https://doi.org/10.1109/
CVPR.2017.243

[27] Jian Huang, Zehang Lin, Zhenguo Yang, and Wenyin Liu. 2021. Temporal Graph
Convolutional Network for Multimodal Sentiment Analysis. In Proceedings of
ICMI. ACM, Montréal, QC, Canada, 239–247. https://doi.org/10.1145/3462244.
3479939

[28] Taichi Ishiwatari, Yuki Yasuda, Taro Miyazaki, and Jun Goto. 2020. Relation-
aware Graph Attention Networks with Relational Position Encodings for Emotion
Recognition in Conversations. In Proceedings of EMNLP. Association for Compu-
tational Linguistics, Online, 7360–7370. https://doi.org/10.18653/v1/2020.emnlp-
main.597

[29] Summaira Jabeen, Xi Li, Muhammad Shoib Amin, Omar Bourahla, Songyuan Li,
and Abdul Jabbar. 2023. A Review on Methods and Applications in Multimodal
Deep Learning. ACM Trans. Multimedia Comput. Commun. Appl. 19, 2s, Article
76 (feb 2023), 41 pages. https://doi.org/10.1145/3545572

[30] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and
Omer Levy. 2020. SpanBERT: Improving Pre-training by Representing and
Predicting Spans. Trans. Assoc. Comput. Linguistics 8 (2020), 64–77. https:
//doi.org/10.1162/tacl_a_00300

[31] Bongseok Lee and Yong Suk Choi. 2021. Graph Based Network with Contextu-
alized Representations of Turns in Dialogue. In Proceedings of EMNLP. Associa-
tion for Computational Linguistics, Punta Cana, Dominican Republic, 443–455.
https://doi.org/10.18653/v1/2021.emnlp-main.36

[32] Chi-Chun Lee, Carlos Busso, Sungbok Lee, and Shrikanth S. Narayanan. 2009.
Modeling mutual influence of interlocutor emotion states in dyadic spoken
interactions. In INTERSPEECH. ISCA, Brighton, United Kingdom, 1983–1986.
http://www.isca-speech.org/archive/interspeech_2009/i09_1983.html

[33] Joosung Lee and Wooin Lee. 2022. CoMPM: Context Modeling with Speaker’s
Pre-trained Memory Tracking for Emotion Recognition in Conversation. In
Proceedings of NAACL-HLT. Association for Computational Linguistics, Seattle,
United States, 5669–5679. https://doi.org/10.18653/v1/2022.naacl-main.416

[34] Jingye Li, Donghong Ji, Fei Li, Meishan Zhang, and Yijiang Liu. 2020. Hi-
Trans: A Transformer-Based Context- and Speaker-Sensitive Model for Emo-
tion Detection in Conversations. In Proceedings of COLING. International Com-
mittee on Computational Linguistics, Barcelona, Spain (Online), 4190–4200.
https://doi.org/10.18653/v1/2020.coling-main.370

[35] Jiangnan Li, Zheng Lin, Peng Fu, Qingyi Si, andWeipingWang. 2020. A Hierarchi-
cal Transformer with SpeakerModeling for Emotion Recognition in Conversation.
CoRR abs/2012.14781 (2020). arXiv:2012.14781 https://arxiv.org/abs/2012.14781

[36] Zheng Lian, Bin Liu, and Jianhua Tao. 2021. CTNet: Conversational Transformer
Network for Emotion Recognition. IEEE ACM Trans. Audio Speech Lang. Process.
29 (2021), 985–1000. https://doi.org/10.1109/TASLP.2021.3049898

[37] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).
arXiv:1907.11692 http://arxiv.org/abs/1907.11692

https://doi.org/10.18653/v1/N19-1034
https://doi.org/10.18653/v1/P18-1208
https://doi.org/10.1109/TPAMI.2018.2798607
https://aclanthology.org/2022.mmmpie-1.6
https://doi.org/10.1145/2993148.2993165
https://doi.org/10.1007/s10579-008-9076-6
https://doi.org/10.18653/v1/D19-1566
https://ceur-ws.org/Vol-2614/AffCon20_session1_complementary.pdf
https://ceur-ws.org/Vol-2614/AffCon20_session1_complementary.pdf
https://doi.org/10.1145/3474085.3475661
https://doi.org/10.1109/CVPRW56347.2022.00511
https://proceedings.neurips.cc/paper/2019/hash/757f843a169cc678064d9530d12a1881-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/757f843a169cc678064d9530d12a1881-Abstract.html
https://doi.org/10.1145/3586075
https://doi.org/10.18653/v1/2021.findings-emnlp.70
https://doi.org/10.18653/v1/2021.findings-emnlp.70
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/D18-1382
https://doi.org/10.18653/v1/D18-1382
https://doi.org/10.18653/v1/2020.findings-emnlp.224
https://doi.org/10.18653/v1/D19-1015
https://doi.org/10.18653/v1/D19-1015
https://doi.org/10.18653/v1/2021.emnlp-main.723
https://doi.org/10.18653/v1/2021.emnlp-main.723
https://doi.org/10.1109/CVPR52688.2022.02005
https://doi.org/10.1145/3394171.3413678
https://doi.org/10.1109/ICASSP43922.2022.9747397
https://doi.org/10.1109/ICASSP43922.2022.9747397
https://doi.org/10.18653/v1/2021.acl-long.547
https://doi.org/10.18653/v1/2021.acl-long.547
https://aclanthology.org/2022.emnlp-main.534
https://aclanthology.org/2022.emnlp-main.534
https://doi.org/10.1109/TAFFC.2022.3205919
https://doi.org/10.1109/TAFFC.2022.3205919
https://doi.org/10.18653/v1/2021.acl-long.440
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1145/3462244.3479939
https://doi.org/10.1145/3462244.3479939
https://doi.org/10.18653/v1/2020.emnlp-main.597
https://doi.org/10.18653/v1/2020.emnlp-main.597
https://doi.org/10.1145/3545572
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/2021.emnlp-main.36
http://www.isca-speech.org/archive/interspeech_2009/i09_1983.html
https://doi.org/10.18653/v1/2022.naacl-main.416
https://doi.org/10.18653/v1/2020.coling-main.370
https://arxiv.org/abs/2012.14781
https://arxiv.org/abs/2012.14781
https://doi.org/10.1109/TASLP.2021.3049898
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692


MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Bobo Li et al.

[38] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In Proceedings of ICLR. OpenReview.net, New Orleans, LA. https://openreview.
net/forum?id=Bkg6RiCqY7

[39] Sijie Mai, Haifeng Hu, and Songlong Xing. 2020. Modality to Modality Trans-
lation: An Adversarial Representation Learning and Graph Fusion Network for
Multimodal Fusion. In Proceedings of AAAI. AAAI Press, New York, USA, 164–172.
https://ojs.aaai.org/index.php/AAAI/article/view/5347

[40] François Mairesse, Marilyn A. Walker, Matthias R. Mehl, and Roger K. Moore.
2007. Using Linguistic Cues for the Automatic Recognition of Personality in
Conversation and Text. J. Artif. Intell. Res. 30 (2007), 457–500. https://doi.org/10.
1613/jair.2349

[41] Navonil Majumder, Devamanyu Hazarika, Alexander F. Gelbukh, Erik Cambria,
and Soujanya Poria. 2018. Multimodal sentiment analysis using hierarchical
fusion with context modeling. Knowl. Based Syst. 161 (2018), 124–133. https:
//doi.org/10.1016/j.knosys.2018.07.041

[42] Navonil Majumder, Soujanya Poria, Devamanyu Hazarika, Rada Mihalcea,
Alexander F. Gelbukh, and Erik Cambria. 2019. DialogueRNN: An Attentive RNN
for Emotion Detection in Conversations. In Proceedings of AAAI. AAAI Press,
Honolulu, Hawaii, USA, 6818–6825. https://doi.org/10.1609/aaai.v33i01.33016818

[43] Yuzhao Mao, Guang Liu, Xiaojie Wang, Weiguo Gao, and Xuan Li. 2021. Dia-
logueTRM: Exploring Multi-Modal Emotional Dynamics in a Conversation. In
Findings of EMNLP. Association for Computational Linguistics, Punta Cana,
Dominican Republic, 2694–2704. https://doi.org/10.18653/v1/2021.findings-
emnlp.229

[44] Louis-Philippe Morency, Rada Mihalcea, and Payal Doshi. 2011. Towards Multi-
modal Sentiment Analysis: Harvesting Opinions from the Web. In Proceedings of
ICMI (Alicante, Spain) (ICMI ’11). Association for Computing Machinery, New
York, NY, USA, 169–176. https://doi.org/10.1145/2070481.2070509

[45] Xiaokang Peng, Yake Wei, Andong Deng, DongWang, and Di Hu. 2022. Balanced
Multimodal Learning via On-the-fly Gradient Modulation. In Proceedings of CVPR.
IEEE, 8228–8237. https://doi.org/10.1109/CVPR52688.2022.00806

[46] Patrícia Pereira, Helena Moniz, and João Paulo Carvalho. 2022. Deep Emotion
Recognition in Textual Conversations: A Survey. CoRR abs/2211.09172 (2022).
https://doi.org/10.48550/arXiv.2211.09172 arXiv:2211.09172

[47] Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik
Cambria, and Rada Mihalcea. 2019. MELD: A Multimodal Multi-Party Dataset
for Emotion Recognition in Conversations. In Proceedings of ACL. Association
for Computational Linguistics, Florence, Italy, 527–536. https://doi.org/10.18653/
v1/p19-1050

[48] Tulika Saha, Vaibhav Gakhreja, Anindya Sundar Das, Souhitya Chakraborty, and
Sriparna Saha. 2022. Towards Motivational and Empathetic Response Generation
in Online Mental Health Support. In Proceedings of ACM SIGIR (Madrid, Spain)
(SIGIR ’22). Association for ComputingMachinery, NewYork, NY, USA, 2650–2656.
https://doi.org/10.1145/3477495.3531912

[49] Björn W. Schuller, Anton Batliner, Stefan Steidl, and Dino Seppi. 2011. Recog-
nising realistic emotions and affect in speech: State of the art and lessons
learnt from the first challenge. Speech Commun. 53, 9-10 (2011), 1062–1087.
https://doi.org/10.1016/j.specom.2011.01.011

[50] Björn W. Schuller, Bogdan Vlasenko, Florian Eyben, Martin Wöllmer, André
Stuhlsatz, AndreasWendemuth, and Gerhard Rigoll. 2010. Cross-Corpus Acoustic
Emotion Recognition: Variances and Strategies. IEEE Trans. Affect. Comput. 1, 2
(2010), 119–131. https://doi.org/10.1109/T-AFFC.2010.8

[51] Xiaohui Song, Liangjun Zang, Rong Zhang, Songlin Hu, and Longtao Huang. 2022.
Emotionflow: Capture the Dialogue Level Emotion Transitions. In IEEE, ICASSP.
IEEE, Virtual and Singapore, 8542–8546. https://doi.org/10.1109/ICASSP43922.

2022.9746464
[52] Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J. Zico Kolter, Louis-Philippe

Morency, and Ruslan Salakhutdinov. 2019. Multimodal Transformer for Unaligned
Multimodal Language Sequences. In Proceedings of ACL. Association for Compu-
tational Linguistics, Florence, Italy, 6558–6569. https://doi.org/10.18653/v1/P19-
1656

[53] Geng Tu, Bin Liang, Dazhi Jiang, and Ruifeng Xu. 2022. Sentiment- Emotion-
and Context-guided Knowledge Selection Framework for Emotion Recognition
in Conversations. IEEE Transactions on Affective Computing (2022), 1–14. https:
//doi.org/10.1109/TAFFC.2022.3223517

[54] Laurens van der Maaten and Geoffrey E. Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605.

[55] Anuradha Welivita, Yubo Xie, and Pearl Pu. 2021. A Large-Scale Dataset for
Empathetic Response Generation. In Proceedings of EMNLP. Association for Com-
putational Linguistics, Online and Punta Cana, Dominican Republic, 1251–1264.
https://doi.org/10.18653/v1/2021.emnlp-main.96

[56] Martin Wöllmer, Felix Weninger, Tobias Knaup, Björn Schuller, Congkai Sun,
Kenji Sagae, and Louis-Philippe Morency. 2013. YouTube Movie Reviews: Senti-
ment Analysis in an Audio-Visual Context. IEEE Intelligent Systems 28 (2013),
46–53.

[57] Dingkang Yang, Shuai Huang, Haopeng Kuang, Yangtao Du, and Lihua Zhang.
2022. Disentangled Representation Learning for Multimodal Emotion Recogni-
tion. In Proceedings of ACMMM (Lisboa, Portugal). Association for ComputingMa-
chinery, New York, NY, USA, 1642–1651. https://doi.org/10.1145/3503161.3547754

[58] Xiaocui Yang, Shi Feng, Yifei Zhang, and Daling Wang. 2021. Multimodal
Sentiment Detection Based on Multi-channel Graph Neural Networks. In Pro-
ceedings of ACL. Association for Computational Linguistics, Online, 328–339.
https://doi.org/10.18653/v1/2021.acl-long.28

[59] Wenmeng Yu, Hua Xu, Ziqi Yuan, and Jiele Wu. 2021. Learning Modality-Specific
Representations with Self-Supervised Multi-Task Learning for Multimodal Senti-
ment Analysis. In Proceedings of AAAI. AAAI Press, Virtual Event, 10790–10797.
https://ojs.aaai.org/index.php/AAAI/article/view/17289

[60] Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cambria, and Louis-Philippe
Morency. 2017. Tensor Fusion Network for Multimodal Sentiment Analysis. In
Proceedings of EMNLP. Association for Computational Linguistics, Copenhagen,
Denmark, 1103–1114. https://doi.org/10.18653/v1/d17-1115

[61] Amir Zadeh, Paul Pu Liang, Navonil Mazumder, Soujanya Poria, Erik Cambria,
and Louis-Philippe Morency. 2018. Memory Fusion Network for Multi-view
Sequential Learning. In Proceedings of AAAI. AAAI Press, NewOrleans, Louisiana,
USA, 5634–5641. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/17341

[62] Huaizheng Zhang, Linsen Dong, Guanyu Gao, Han Hu, Yonggang Wen, and Kyle
Guan. 2020. DeepQoE: A Multimodal Learning Framework for Video Quality
of Experience (QoE) Prediction. IEEE Trans. Multim. 22, 12 (2020), 3210–3223.
https://doi.org/10.1109/TMM.2020.2973828

[63] Weixiang Zhao, Yanyan Zhao, and Bing Qin. 2022. MuCDN: Mutual Conver-
sational Detachment Network for Emotion Recognition in Multi-Party Conver-
sations. In Proceedings of COLING. International Committee on Computational
Linguistics, Gyeongju, Republic of Korea, 7020–7030. https://aclanthology.org/
2022.coling-1.612

[64] Lixing Zhu, Gabriele Pergola, Lin Gui, Deyu Zhou, and Yulan He. 2021. Topic-
Driven and Knowledge-Aware Transformer for Dialogue Emotion Detection. In
Proceedings of ACL. Association for Computational Linguistics, Online, 1571–1582.
https://doi.org/10.18653/v1/2021.acl-long.125

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://ojs.aaai.org/index.php/AAAI/article/view/5347
https://doi.org/10.1613/jair.2349
https://doi.org/10.1613/jair.2349
https://doi.org/10.1016/j.knosys.2018.07.041
https://doi.org/10.1016/j.knosys.2018.07.041
https://doi.org/10.1609/aaai.v33i01.33016818
https://doi.org/10.18653/v1/2021.findings-emnlp.229
https://doi.org/10.18653/v1/2021.findings-emnlp.229
https://doi.org/10.1145/2070481.2070509
https://doi.org/10.1109/CVPR52688.2022.00806
https://doi.org/10.48550/arXiv.2211.09172
https://arxiv.org/abs/2211.09172
https://doi.org/10.18653/v1/p19-1050
https://doi.org/10.18653/v1/p19-1050
https://doi.org/10.1145/3477495.3531912
https://doi.org/10.1016/j.specom.2011.01.011
https://doi.org/10.1109/T-AFFC.2010.8
https://doi.org/10.1109/ICASSP43922.2022.9746464
https://doi.org/10.1109/ICASSP43922.2022.9746464
https://doi.org/10.18653/v1/P19-1656
https://doi.org/10.18653/v1/P19-1656
https://doi.org/10.1109/TAFFC.2022.3223517
https://doi.org/10.1109/TAFFC.2022.3223517
https://doi.org/10.18653/v1/2021.emnlp-main.96
https://doi.org/10.1145/3503161.3547754
https://doi.org/10.18653/v1/2021.acl-long.28
https://ojs.aaai.org/index.php/AAAI/article/view/17289
https://doi.org/10.18653/v1/d17-1115
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17341
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17341
https://doi.org/10.1109/TMM.2020.2973828
https://aclanthology.org/2022.coling-1.612
https://aclanthology.org/2022.coling-1.612
https://doi.org/10.18653/v1/2021.acl-long.125


Revisiting Conversational Emotion Recognition MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

A DATASET & EXPERIMENT DETAILS
A.1 Dataset
We provide detailed descriptions of the two datasets used in this
study: MELD and IEMOCAP.

MELD.MELD is a multi-party dialogue dataset consisting of con-
versation snippets from the TV show Friends. The dataset includes
1,433 dialogues and 13,708 utterances, with an average of 9.6 turns
per dialogue, and features 378 unique speakers. Each utterance
in the dataset is labeled with one of seven emotions, namely joy,
sadness, neutral, surprise, anger, fear, and disgust, based on the emo-
tion conveyed by the speaker. The detailed statistics for the MELD
dataset are provided in Table 4.

Table 4: The statistics for the MELD dataset. In the dataset,
there are seven different types of emotions: Neutral, Surprise,
Fear, Sadness, Joy, Disgust, and Anger.

Neut Surp Fea Sad Joy Dis Ang Total
Train 4,710 1,205 268 271 683 1,743 1,109 9,989
Valid 470 150 40 22 111 163 153 1,109
Test 1,256 281 50 68 208 402 345 2,610
Total 6,436 1,636 358 361 1,002 2,308 1,607 13,708

IEMOCAP. IEMOCAP is another dataset used in this study and
comprises a total of 151 dialogues and 7,433 utterances. The dataset
features two speakers interacting in each session, with a total of
10 speakers across all dialogues. Each utterance in the dataset is
labeled with one of six emotions: happy, sad, neutral, angry, excited,
or frustrated. The detailed statistics for the IEMOCAP dataset are
provided in Table 5.

Table 5: The statistics for the IEMOCAP dataset. In the
dataset, there are six different types of emotions: Happy,
Sad, Neutral, Angry, Excited, and Frustrated.

Hap Sad Neut Ang Exci Frus Total
Train 448 736 1,229 834 653 1,346 5,246
Valid 56 103 95 99 89 122 564
Test 144 245 384 170 299 381 1,623
Total 648 1,084 1,708 1,103 1,041 1,849 7,433

A.2 Settings
We employ RoBERTa-Large to encode text content without any
additional pre-processing operations. We utilize the AdamW [38]
optimizer and LR scheduler with a warm-up mechanism for pa-
rameter optimization. The learning rates for the PLM layer and
non-PLM layer are set to 1e-5 and 1e-3, respectively. Utterances
exceeding 256 tokens are clipped to meet the model’s input length
requirement and reduce memory usage. Furthermore, we apply a
dropout layer with a rate of 0.2 after the encoder to further en-
hance the performance of our model. We set the batch size to 8 and
4 for the MELD and IEMOCAP datasets, respectively. We set the
temperature in DDM to 0.5 for Eq. (3) and 0.3 for Eq. (5). All ex-
periments are conducted on Ubuntu systems with two RTX A5000
GPUs. Additional parameters are shown in Table 6.

B ADDITIONAL EXPERIMENT
In this section, we present more experiment results to investigate
the performance of DF-ERC.

Table 6: Hyperparameters setting.

Parameter/Module MELD IEMOCAP
Encoder

Text Embedding Dim. 1024 1024
Audio Embedding Dim. 300 1582
Video Embedding Dim. 342 342

DDM
MLP𝑚

𝑡/𝑎/𝑣 Output Dim. (Eq. 4) 300 300
MLP𝑢

𝑡/𝑎/𝑣 Output Dim. (Eq. 6) 300 300
CFM

MLP𝑟
𝑡/𝑎/𝑣 Output Dim. (Eq. 19) 500 500

CRM
BiLSTM Hidden Dim. (Eq. 23) 300 300
𝛽 (Eq. 21) 0.1 0.1

Training
Epoch size 10 10
Max grad norm 1.0 1.0
Warmup steps 100 100
Weight Decay 0.01 0.01

Hyper-parameter Analysis In our study, we introduce certain
hyperparameters and adopt a grid search strategy for their opti-
mization. An example of these parameters is 𝛼3, as referenced in
Eq.(25). To assess the effect of the parameter and evaluate the ro-
bustness of DF-ERC, we document the variation in the F1 score as
𝛼3 is adjusted within a particular range. As depicted in Figure 9,
the F1 score fluctuates slightly with changes in 𝛼3, peaking when
𝛼3 = 0.3. Performance experiences a minor decline when 𝛼3 devi-
ates from this optimal value, illustrating the robustness of DF-ERC
around 𝛼3 = 0.3.
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Figure 9: Trend in F1 score with respect to the changes in 𝛼3
in Eq. (25).

Visualization for feature disentanglement. To visualize the
effectiveness of DDM for feature disentanglement, we analyze
the distribution of the three modalities after modality-level dis-
entanglement (see Eq. (2)) and utterance-level disentanglement
(see Eq. (4)) using t-SNE [54], as shown in Figure 10. The result
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Figure 10: T-SNE [54] visualization of multimodal features after applying DDM in modality and utterance levels.
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Figure 11: Virtualization of the correlation between predic-
tion performance and MSE (Eq. (14), the difference between
TCP and modality contribution) in CFM. X-axis: MSE; Upper
Y-axis: Proportions of MSE; Lower Y-axis: Predicted accuracy
using each modality.

indicates that modality-level contrastive learning effectively dis-
entangles the three modalities from each other. Furthermore, we
also observe that utterance-level disentanglement can align fea-
tures within an utterance by entangling features from three distinct

modality spaces. These findings highlight the effectiveness of our
DDM in controlling the modality distribution in feature space based
on the corresponding optimization objective and thus can further
improve the emotion recognition performance.

The contribution of CFM for final performance. To verify
the effect of CFM, we investigated the relationship between the
prediction effect (evaluated usingMSE) of TCP and the final emotion
recognition performance. Figure 11 shows that for the majority of
utterances, the MSE of the TCP prediction is less than 0.1, indicating
satisfactory performance for TCP. However, it should be noted that
a better TCP prediction for each modality does not necessarily
result in a higher emotion prediction score, as shown by the wave
pattern in the bottom half of the figure, which suggests that TCP has
some limitations as a modality contribution evaluator. Nonetheless,
after averaging the prediction MSE of the three modalities within
an utterance, we observed a gradual increase in performance with
a smoother tendency as the MSE decreased. This demonstrates that,
overall, a predicted contribution weight can guide the model to
assign the optimal weight for each modality and thus achieve better
final performance.
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