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ABSTRACT
The realm of scientific text summarization has experienced remark-
able progress due to the availability of annotated brief summaries
and ample data. However, the utilization of multiple input modali-
ties, such as videos and audio, has yet to be thoroughly explored.
At present, scientific multimodal-input-based text summarization
systems tend to employ longer target summaries like abstracts,
leading to an underwhelming performance in the task of text sum-
marization.

In this paper, we deal with a novel task of extreme abstractive
text summarization (aka TL;DR generation) by leveraging multiple
input modalities. To this end, we introduce mTLDR, a first-of-its-
kind dataset for the aforementioned task, comprising videos, audio,
and text, along with both author-composed summaries and expert-
annotated summaries. The mTLDR dataset accompanies a total of
4, 182 instances collected from various academic conference pro-
ceedings, such as ICLR, ACL, and CVPR. Subsequently, we present
mTLDRgen, an encoder-decoder-based model that employs a novel
dual-fused hyper-complex Transformer combined with a Wasser-
stein Riemannian Encoder Transformer, to dexterously capture the
intricacies between different modalities in a hyper-complex latent
geometric space. The hyper-complex Transformer captures the in-
trinsic properties between the modalities, while the Wasserstein
Riemannian Encoder Transformer captures the latent structure
of the modalities in the latent space geometry, thereby enabling
the model to produce diverse sentences. mTLDRgen outperforms 20
baselines on mTLDR as well as another non-scientific dataset (How2)
across three Rouge-based evaluation measures. Furthermore, based
on the qualitative metrics, BERTScore and FEQA, and human evalu-
ations, we demonstrate that the summaries generated by mTLDRgen
are fluent and congruent to the original source material.

CCS CONCEPTS
• >Computing methodologies → Natural language process-
ing.
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TLDR: We propose a joint classifier/detector training scheme with 
provable performance guarantees against adversarial perturbations.

Abstract: Adversarial attacks 
against deep networks can be 
defended against either by 
building robust classifiers or, 
by creating classifiers that can 
detect the presence of 
adversarial perturbations.  
Although  [...]
Introduction: Despite 
popularity and success of 
deep neural networks in many 
applications [...]
Background: Let us consider 
an L-layer feed-forward neural 
network, trained for a K-class 
classification task. [...]
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Figure 1: A sample of mTLDR dataset with video, text and audio
modalities along with the target TLDR. The feature repre-
sentations for video frames are obtained by ResNext, audio
features are extracted using Kaldi, and the text is extracted
from the pdf of the article.
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1 INTRODUCTION
Abstractive text summarization enables one to promptly compre-
hend the essence of a written work, determining if it is worth pe-
rusing. In contrast to extractive summarization, which emphasizes
the crucial passages within the original document as a summary,
abstractive summarization recomposes the summary from scratch
by synthesizing the core semantics and the entire substance of
the document. Earlier studies dealt with abstractive summariza-
tion by solely utilizing textual input [9, 10, 15, 26, 46]; thereafter,
multimodal inputs [29, 42, 47, 64] were integrated to enhance the
quality of the generated summaries. Studies have revealed that
multimodal data assists humans in comprehending the essence of a
written work more effectively [17], thus leading us to the inference
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that multimodal data can enrich the context and produce more
comprehensive scientific summaries.

Motivation:With the emergence of deep learning architectures
like LSTM, Attention, and Transformer, the literature in the sci-
entific community has skyrocketed. It is extremely hard to keep
up with the current literature by going through every piece of
text in a research article. The abstract of a paper often serves as a
bird’s eye view of the paper, highlighting the problem statement,
datasets, proposed methodology, analysis, etc. Recent studies [1]
re-purpose abstracts to generate summaries of scientific articles.
However, it is cumbersome to go through the abstract of each paper.
The abstracts are nearly 300 tokens long, and reading the complete
abstract of every paper to figure out the mutual alignment is te-
dious. The task of TL;DR (aka, tl;dr, too long; didn’t read) [5, 55]
was introduced to generate an extremely concise summary from the
text-only article highlighting just the high-level contributions of
the work. Later, Mao et al. [37] introduced the CiteSum dataset for
generating text-only extreme summaries. However, the text alone
can not comprehend the entire gist of the research article. The
multimodal information, including the video of the presentation
and audio, often provide crucial signals for extreme text summary
generation.

Problem statement: In this work, we propose a new task of
multimodal-input-based TL;DR generation for scientific contents
which aims to generate an extremely-concise and informative text
summary. We incorporate the visual modality to capture the visual
elements, the audio modality to capture the tonal-specific details
of the presenter, and the text modality to help the model align all
three modalities. We also show the generalizability of the proposed
model on another non-academic dataset (How2).

State-of-the-art and limitations: The pursuit of multimodal-
input-based abstractive text summarization can be related to various
other fields, such as image and video captioning [22, 34, 39, 48, 49],
video story generation [16], video title generation [57], and mul-
timodal sentence summarization [28]. However, these works gen-
erally produce summaries based on either images or short videos,
and the target summaries are easier to predict due to the limited
vocabulary diversity. On the other hand, scientific documents have
a complex and structured vocabulary, which the existing methods
[42] of generating short summaries are not equipped to handle. Re-
cently, Atri et al. [1] proposed as a novel dataset for the multimodal
text summarization of scientific presentations; however, it uses
the abstract as the target summary, which falls short in producing
coherent summaries for the extreme multimodal summarization
(TL;DR) task.

In summary, the current paper offers the following contributions:

• Novel problem:We propose the task of extreme abstractive text
summarization for scientific contents, by utilizing videos, audio
and research articles as inputs.

• Novel dataset: The development and curation of the first large-
scale dataset mTLDR for extreme multimodal-input-based text
summarization of scientific contents. Figure 1 shows an excerpt
from the mTLDR dataset. This dataset has been meticulously com-
piled from five distinct public websites and comprises articles
and videos obtained from renowned international conferences
in Computer Science. The target summaries are a fusion of

manually-annotated summaries and summaries written by the
authors/presenters of the papers.

• Novel model: We propose mTLDRgen, a novel encoder-decoder-
based model designed to effectively capture the dynamic inter-
play between various modalities. The model is implemented with
a dual-fused hyper-complex Transformer and a Wasserstein Rie-
mannian Encoder Transformer. The hyper-complex Transformer
projects the modalities into a four-dimensional space consist-
ing of one real component and three imaginary components,
thereby capturing the intrinsic properties of individual modali-
ties and their relationships with one another. Additionally, the
Wasserstein Riemannian Encoder Transformer is employed to
apprehend the latent structure of the modalities in the geometry
of the latent space.

• Evaluation:We benchmark mTLDR over six extractive (text-only),
eight abstractive (text-only), two video-based and four multi-
modal summarization baselines, demonstrating the effectiveness
of incorporating multimodal signals in providing more context
and generating more fluent and informative summaries. We eval-
uate the benchmark results over the quantitative (Rouge-1/2/L)
and qualitative (BERTScore and FEQA) metrics. Our proposed
modal, mTLDRgen, beats the best-performing baseline by +5.24
Rouge-1 and +3.35 Rouge-L points. We also show the generaliz-
ability of mTLDRgen on another non-scientific dataset (How2).

• Deployment:We further designed an in-house institute-wide
web API based on the end-to-end pipeline of mTLDRgen. The web
API is currently undergoing a beta testing phase and has gathered
more than 100+ hits so far. The API will be made open across
academic institutes and beyond upon successful completion of
the beta testing.
Reproducibility:We discuss the detailed hyperparameters (Sup-

plementary, Table 7) and experimentation setting in Section 6.1.
We also provide a sample dataset of mTLDR and the source code of
mTLDRgen at https://github.com/LCS2-IIITD/mTLDRgen.

2 RELATEDWORK
The development and utilization of abstractive text summariza-
tion systems involve the formulation of textual summaries through
the integration of two or more auxiliary signals. These signals, be-
yond the traditional text, may encompass video [12], images [51],
and audio [19]. The integration of additional modalities, as com-
pared to text-only systems, offers a plethora of opportunities to
enhance the contextual richness and knowledge base of the gener-
ated summaries. Several recent studies [1, 45] demonstrated that
the integration of multimodal signals such as video and audio can
significantly improve the contextual accuracy and informativeness
of the summaries generated by unimodal systems.

Unimodal text summarization: Text summarization is classi-
fied into two categories – extractive and abstractive. Extractive sys-
tems extract the most relevant sentences from the source document
to form the summary, while abstractive systems paraphrase impor-
tant sentences to generate a new summary. Conventional extractive
summarization approaches either construct a graph representation
of the source document [13, 32, 38] or pose the summarization task
as a binary classification with ranking [8, 35, 40, 62]. On the other
hand, abstractive summarization has significantly benefited from

https://github.com/LCS2-IIITD/mTLDRgen
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the advent of deep neural networks. Early works [41, 46] utilized
CNN/Dailymail dataset [21] to explore abstractive summarization
on a large scale. Later, Pointer Generators (PG) [46] were extended
to capture the latent structures of documents [14, 50]. The use of
Transformers [54] and attention mechanisms [2] further improved
the encoding of long sequential data. These improvements include
leveraging Transformers [20] and repurposing attention heads as
copy pointers [15] to enhance the quantitative performance. Large
language models [11, 44, 59] have demonstrated impressive perfor-
mance on multiple datasets [14, 21]. Models proposed in [11] and
[59] are pre-trained using token and phrase masking techniques,
respectively, while Raffel et al. [44] approached all downstream
tasks as a text-to-text problem and pre-train using a single loss
function.

Extreme unimodal text summarization: The objective of
extreme text summarization is to drastically reduce the size of
the source document while preserving its essence in the resulting
summary. The concept of extreme summarization was first intro-
duced by Völske et al. [55] with a novel dataset focused on social
media summarization. Subsequently, Cachola et al. [5] and Mao
et al. [37] presented new corpora, namely SciTLDR and CiteSum,
respectively, for extreme summarization of scientific documents.
However, it remains an open area to explore extreme abstractive
text summarization using multimodal signals.

Text summarization with multimodality: The incorporation
of multimodal information in text summarization enriches the com-
prehension of the data, elevating it to a representation that better
reflects the source document [3, 25]. In the absence ofmultimodal in-
formation, the summarization model can only comprehend limited
information; however, with the integration of multiple modalities,
the models acquire a more comprehensive understanding, lead-
ing to the creation of highly fluent and semantically meaningful
summaries. Multimodal summarization has been explored in var-
ious domains, including instructional YouTube videos [45], news
videos [7, 30], and recipe videos [63]. The concept of generating
multimodal outputs from multimodal inputs has also been studied
[43, 60, 64], where a news event was summarized with a text sum-
mary along with a corresponding image. Zhang et al. [61] recently
introduced cross-modal alignment to harmonize visual features
with the text to produce a more coherent summary. Although ex-
isting datasets feature the use of either images or videos as a visual
modality, the closest dataset to our task is the How2 dataset [45],
housing all three modalities to generate a short summary. How-
ever, when compared to mTLDR, the How2 dataset falls short in
terms of length, structuredness and complexity of vocabulary in
the source and target documents. Evidently, the existing approaches
over the How2 dataset fail to extend similar performance on the
mTLDR dataset.

3 PROPOSED DATASET
To explore the efficacy of multimodal signals and enable enriched
abstractive summaries aided by various modalities, we introduce
mTLDR, the first large-scalemultimodal-input based abstractive sum-
marization (TL;DR) dataset with diverse lengths of videos. mTLDR
is collected from various well-known academic conferences like
ACL, ICLR, CVPR, etc. The only comparable dataset to mTLDR is

Table 1: Statistics of the used datasets (mTLDR and How2) – the
number of samples (#source), average token length of source
documents (avg source len), average tokens in the target
summaries (avg target len), and abstractness percentage (Abs)
of datasets.

Dataset #source avg source len avg target len %Abs
How2 73993 291 33 14.2
mTLDR 4182 5K 18 15.9

the How2 dataset, which comprises short instructional videos from
various topics like gardening, yoga, sports, etc. Compared to How2,
mTLDR contains structured and complex vocabulary, which requires
attention to diverse information while generating summaries.

Our compilation encompasses video recordings from openre-
view.net and videolecture.net, in addition to the accompanying
source pdf and metadata information, including the details of the
authors, title, and keywords. The collected dataset comprises a to-
tal of 4, 182 video recordings, spanning a duration of over 1, 300
hours. Of these, we designated 2, 927 instances as the training set,
418 for validation, and 837 for testing. The average length of the
videos is 14 minutes, and the TLDR summary has an average of
19 tokens. The target summaries for the data are a combination
of human-annotated and author-generated summaries. In terms
of abstractness, mTLDR contains 15.9% novel 𝑛-grams. Each data
instance includes a video, audio extracted from the video, an article
pdf, and a target summary. We opted not to annotate or retain
multiple summaries for a single instance to ensure efficient training
and testing processes. We assert that a single extreme summary is
sufficient to convey the essence of the paper. The target summaries
for papers obtained from the ACL anthology were annotated as
they lacked any author-generated summaries. Of the 4, 182 videos,
a total of 1, 128 summaries were manually annotated by 25 annota-
tors. During the annotation process, the annotators were instructed
to thoroughly read the abstract, introduction, and conclusion and
to have a general understanding of the remaining content. Each
summary was then verified by another to confirm that it accurately
represents the paper’s major contributions.

In contrast, the How2 dataset [45] consists of 73, 993 training,
2, 965 validation, and 2, 156 test instances. The average token length
for the source documents is 291, while for the target summary, it
is 33. Compared to the source document, the target summaries
contains 14.2% novel 𝑛-grams. The transcripts for videos and the
target summary are human-annotated. Table 1 shows brief statistics
of the How2 and mTLDR datasets.

4 PROPOSED METHODOLOGY
This section presents our proposed system, mTLDRgen, amultimodal-
input-based extreme abstractive text summary (TL;DR) generator.
Figure 2 shows a schematic diagram. During an academic con-
ference presentation, there are typically three major modalities
present – visual, audio, and text, each of which complements the
others, and when combined, contributes to a rich and expressive
feature space, leading to the generation of coherent and fluent sum-
maries. mTLDRgen initially extracts features from the independent
modalities and then feeds them to the dual-fused hyper-complex
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Figure 2: An overview of the proposed model – mTLDRgen. It houses two parallel encoders, one with a hyper-complex layer fused
with the video embeddings using cross-model attention and the other with Wasserstein Riemannian Encoder Transformer
with audio embeddings fused with cross-model attention. The individual encoder representations are later fused with the
multi-head attention of the pre-trained BART decoder to generate the final summary.

Transformer (DFHC) and the Wasserstein Riemannian Encoder
Transformer (WRET) blocks. Cross-modal attention is used to fuse
the visual and audio features with the text representations. Finally,
the fused representation is fed to a pre-trained BART [27] decoder
block to produce the final summary. The rest of this section delves
into the individual components of mTLDRgen.

4.1 Video Feature Extraction
The video modality in an academic presentation often comprises
variations in frames and kinesthetic signals, highlighting key phrases
or concepts during a presentation. To capture visual and kines-
thetic aspects, we utilise the ResNeXt-152-3D [24] model as it is
pre-trained on the Kinetics dataset for recognition of 400 human ac-
tions. Four frames per second are extracted from the video, cropped

to 112 × 112 pixels and normalized, and a 2048-dimensional feature
vector is extracted from the ResNeXt-152-3D model for every 12
non-overlapping frames. The 2048-dimensional vector is then fed
to the mean pooling layer to obtain a global representation of the
video modality. Later, a feed-forward layer is applied to map the
2048-dimensional vector to a 512-dimensional vector.

4.2 Speech Feature Extraction
To capture the variations in the speaker’s voice amplitudes, which
are considered to signify the importance of specific topics or phrases
[52], we extract audio features from the conference video. This is
accomplished by extracting audio from the video using the FFM-
PEG package1, resampling it to a mono channel, processing it to

1https://ffmpeg.org/
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a 16𝐾 Hz audio sample, and dividing it into overlapping windows
of 30 milliseconds. The extracted audio is then processed to obtain
512-dimensional Mel Frequency Cepstral Coefficients (MFCC) fea-
tures. The final representation is obtained by applying a log Mel
frequency filter bank and discrete cosine transformation, and the
feature sequence is padded or clipped to a fixed length.

4.3 Textual Feature Extraction
In order to extract the feature representations for the article text,
the pdf content is obtained through the Semantic Scholar Open Re-
search pipeline (SSORP) [36]. SSORP uses the SCIENCEPARSE2 and
GROBID3 APIs for text extraction from pdf. For the How2 dataset,
the video transcriptions are manually annotated and transformed
into a text feature set for training. In contrast, the acoustic features
for mTLDRgen are not transformed into the text as they are charac-
terized by a variety of non-native English accents and a high error
rate for speech-to-text models. Both the textual representations
are tokenized using the vanilla BART tokenizer and transformed
to word vectors using standard Transformer positional encoding
embeddings.

4.4 Dual-fused Hyper-complex Transformer
We propose a dual-fused hyper-complex Transformer (DFHC) for
the task of multimodal text summarization. Compared to multi-
head attention, the hyper-complex layer allows mTLDRgen to ef-
ficiently capture the intricacies between different modalities and
learn better representations [58] in the hyper-complex space. For
the block DFHC, we represent the text as 𝑋 and pass it through
the hyper-complex layer to extract the (Q) Query, (K) Key and (V)
Value transformations as follows: 𝑄,𝐾,𝑉 = Φ(HCL(𝑋 )), where
𝐻𝐶𝐿(𝑋 ) = 𝐻𝑥 + 𝑏. Here 𝐻 ∈ R𝑚×𝑛 is constructed by a sum of
Kronecker products and is given by 𝐻 =

∑𝑛
𝑖=1 𝑃𝑖 ⊗ 𝑄𝑖 . The 𝑃𝑖 and

𝑄𝑖 are the parameter matrices, and ⊗ represents the Kronecker
product.

The final attention score 𝐴 is obtained as:

𝐴 = softmax(𝑄𝐾
𝑇√︁
𝑑𝑘

)

Here 𝑄 represents the query value, 𝐾 represents the key value,
and 𝑑𝑘 represents the key dimension.

The HCL layers share attention weights among the multi-head
attention heads. The multi-head attention weights are concatenated
and represented as

𝑋 = HCL( [𝐻1 + ... + 𝐻𝑁𝑢𝑚ℎ
])

Here𝑁𝑢𝑚ℎ represents the attention head. The final output obtained
from the HCL layer is represented as:

𝑌 = HCL(ReLU(HCL(𝑋 ))),

The transformation 𝑌 is passed through a multi-head attention
block and is fused with the visual embeddings using the cross-
model attention as discussed in Section 4.6.

2https://github.com/allenai/science-parse
3https://github.com/kermitt2/grobid

4.5 Wasserstein Riemannian Encoder
Transformer

We base our idea from Wang and Wang [56] to repurpose the
Wasserstein Riemannian Autoencoder to Wasserstein Riemannian
Encoder Transformer (WRET) in the summarization setting.

For an input 𝑋 and a manifold 𝑀 , the Riemannian manifold is
represented as (𝑀,𝐺), where 𝐺 represents the Riemannian tensor
unit. For two vectors 𝑢 and 𝑣 in the tangent space 𝑇𝑧𝑀 , the inner
product is computed using ⟨𝑢, 𝑣⟩𝐺 = 𝑢𝑇𝐺 (𝑧)𝑣 . The Wasserstein
block acts as a Variational Autoencoder. However, we extract the
feature dimension from the last layer and feed it to the attention
block.

The Wasserstein Autoencoder optimizes the cost between the
target data distribution 𝐴𝑥 (𝑥) and the predicted data distribution
𝐵𝑥 (𝑥) using:

𝐷𝑖𝑠𝑡 (𝐴𝑋 , 𝐵𝐺 ) = inf
𝑄 (𝑍 |𝑋 ) ∈𝑄

𝐸𝑃𝑋 𝐸𝑄 (𝑍 |𝑋 ) [𝑐 (𝑋,𝐺 (𝑍 ))]

+ 𝜆𝑀𝑀𝐷 (𝑄𝑍 , 𝑃𝑍 )
where 𝐺 is the generator function, 𝜆 is a learnable metric, 𝑐 is the
optimal cost, and 𝐷𝑧 is approximated between 𝐵𝐺 and 𝑄𝑍 (𝑧) =∫
𝑞(𝑧 |𝑥)𝑝 (𝑥)𝑑𝑥 using the Maximum Mean Discrepancy (MMD)

[53]. The MMD is computed using

𝑀𝑀𝐷𝑘 (𝑃𝑍 , 𝑄𝑍 ) = | |
∫
Z
𝑘 (𝑧, ·)𝑑𝑃𝑍 −

∫
Z
𝑘 (𝑧, ·)𝑑𝑄𝑍 | |

We formulate a RNF function 𝐹 = 𝑓𝐾 . . . 𝑓1, and optimize the fol-
lowing RNF-Wasserstein function,

𝐷𝑖𝑠𝑡 (𝐴𝑋 , 𝐵𝐺 ) = inf
𝑄 (𝑍 |𝑋 ) ∈Q

𝑃𝑋𝑄 (𝑍 |𝑋 ) [𝑐 (𝑋,𝐺 (𝑍 ′))]

+ 𝜆𝑀𝑀𝐷 (𝑄𝑍 ′ , 𝑃𝑍 ′ )

+ 𝛼 (𝐾𝐿𝐷 (𝑞(𝑧 |𝑥) | |𝑝 (𝑧)) −
∑︁

log |𝑑𝑒𝑡 𝜕𝑓
′

𝜕𝑧
|)

where 𝑍 ′ = 𝐹 (𝑍 ), KLD is KL [23] divergence, and 𝑝 (𝑧) rep-
resents the posterior probability distribution. The MMD term is
approximated using the Gaussian kernel 𝑘 (𝑧, 𝑧′) = 𝑒−| |𝑧−𝑧′ | |2 . The
term𝐺 (𝑍 ′) represents the reconstructed feature set, which is then
passed to a feed-forward layer. The attention weights are computed
for 𝐺 (𝑍 ′) and fused with the audio feature using cross-modal at-
tention as discussed in Section 4.6.

4.6 Cross-model Attention
We fuse the text-video and text-audio features using cross-modal
attention to align the attention distribution obtained from the last
layer. The text feature set projects the Query (𝑄) value, while
the video and audio features project the key (𝐾) and value (𝑉 ),
respectively. The obtained 𝑄 , 𝐾 , and 𝑉 representations are passed
through cross-modal attention, and the final encoder representation
𝐸𝑠 is obtained.

𝑄 = 𝑍𝑡𝑊𝑞 ; 𝐾 = 𝑍𝑣𝑊𝑘 ; 𝑉 = 𝑍𝑣𝑊𝑣

𝐸𝑠 = softmax
(
𝑋𝛼𝑊𝑄𝛼

𝑊 ⊤
𝐾𝛽
𝑋⊤
𝛽√︁

𝑑𝑘

)
𝑋𝛽𝑊𝑉𝛽
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The amalgamated representation, represented as 𝐸𝑠 , is subse-
quently integrated with the multi-head attention mechanism of the
BART decoder to yield the final summary.

To the best of our knowledge, the application of hyper-complex
Transformer and Wasserstein Riemannian flow for abstractive text
summarization has not been explored yet.

5 BASELINES
We benchmark our proposedmodel against 20 baselines – six extrac-
tive text summarization, eight abstractive text summarization, two
video-based abstractive text summarization, and four multimodal-
input-based abstractive text summarization baselines. We briefly
elaborate on them below.

Text-only extractive summarization: (i) Lead-2: The top 2
sentences of the source documents are marked as the generated
summary and evaluated against the target summary. (ii) LexRank:
It [13] represents the source document sentence as nodes of a graph
and edges as a similarity measure. The edge weights are computed
using the eigenvector centrality and the token frequency. (iii) Tex-
tRank: Similar to LexRank, it [38] also represents the source doc-
ument as a fully-connected graph. All edge weights are given a
unit weight, and later a derived version of PageRank re-ranks the
edge weights. (iv)MMR (Maximal Marginal Loss): The redun-
dancy between the sentences is computed by mapping the query
to the sentence [6]. The relevant sentences are kept in a cluster
and filtered based on the similarity ranking. (v) ICSISumm: The
coverage of the sentence in the final summary is optimized using
the linear optimization framework [18]. Given a summary length
bound, integer linear programming (ILP) solvers try to maximize
the global topic coverage. (vi) BERTExtrative: The task of sum-
marization is transformed into a binary classification problem [35].
The sentences are classified into two classes representing whether
the sentence is a part of the final summary or not.

Text-only abstractive summarization: (i) Seq2Seq: It [41]
uses the standard RNN network for both encoder and decoder with
a global attention mechanism. (ii) Pointer Generator (PG): It [46]
extends the Seq2Seq network with the addition of the Pointing
mechanism. The Pointing mechanism allows the network to either
generate tokens from the vocabulary or directly copy from the
source document. (iii) CopyTransformer: It [15] uses the stan-
dard Transformer network. Similar to PG, a random attention head
acts as a pointing mechanism. It also leverages a content selection
module to enrich the generated summary. (iv) Longformer: Unlike
the standard Transformer [54], Longformer [4] uses linear atten-
tion to cater to the long source document. The computed attention
weights are a combination of global and windowed attention. (v)
BERT: It [11] is an encoder-only language model trained on the
token masking technique. We fine-tune BERT over the text-only
setting till convergence. (vi) BART: It [27] is an encoder-decoder-
based language model pre-trained on the phrase masking technique.
Similar to BERT, we fine-tune BART till convergence. (vii) T5: It
[44] considers all NLP downstream tasks as text-to-text problem.
As text-to-text uses the same model architecture and loss through-
out all NLP problems. We fine-tune t5-base on the mTLDR training

data. (viii) Pegasus: Similar to T5, Pegasus [59] is also an encoder-
decoder based model. However, the self-supervision objective is
to mask sentences rather than token masking, helping the model
generate contextual sentences. This pre-training objective vastly
helps text generation tasks like summarization.

Video-only abstractive summarization: (i) Action features
only: The video feature representations are trained over a convolu-
tion layer and passed through attention and an RNN-based decoder.
(ii) RNN (Action features): The video features are trained over
the convolution layer and passed through attention and an RNN-
based encoder. The latent representation is finally fused using the
hierarchical attention and passed onto the RNN-based decoder to
generate the final summary.

Multimodal abstractive summarization: (i) HA: The work
of [31] is repurposed for the multimodal summarization task. The
visual and textual features are fused with hierarchical attention
[42] to align features and capture more context while generating
the summary. (ii) MFFG: It [33] introduces multistage fusion with
forget gate. The encoder part uses a cross-attention-based fusion
with forget gates. The decoder is assembled using a hierarchical
fusion network to capture only the important concepts and forget
redundant information. (iii) FLORAL: It [1] proposes a Factor-
ized Multimodal Transformer based language model consisting of
guided attention and multimodal attention layer to align attention
scores of each modality and use speech and OCR text to guide the
generated summary. (iv) ICAF: It [61] utilises recurrent and con-
trastive alignment to capture the relationship between the video
and text. It makes use of contrastive loss to align modalities in the
embedding space resulting in enriched aligned summaries.

6 EXPERIMENTS
We perform extensive ablations to evaluate the efficacy of the pro-
posed modules of mTLDRgen and individual modalities. We explore
how text, visual and acoustic features perform separately and jointly
over mTLDR and How2.

Evaluationmeasures:Weevaluate the performance of mTLDRgen
using both quantitative metrics - Rouge-1, Rouge-2, and Rouge-L
and qualitative metrics – BERTScore and FEQA. Rouge measures
the recall of unigrams (Rouge-1), bigrams (Rouge-2), and 𝑛-grams
(Rouge-L) between the generated and target summaries. BERTScore
assesses the similarity between the generated and target summaries
in the embedding space through the cosine similarity of the BERT
embeddings. FEQA, a question-answer generation metric, evalu-
ates the quality of the generated summaries by determining the
number of answers mapped to questions generated from the target
summaries.

We further perform human evaluations4 In the evaluations, we
benchmark the summaries over the following parameters — In-
formativeness, Fluency, Coherence and Relevance (c.f. Supplemen-
tary, Section B). We randomly sample 40 instances from the test
set and evaluate them against the target summaries. We perform

4The human evaluations were performed by 15 individuals with sufficient background
in NLP, machine learning and deep learning. The participants were aged between
22-28 years.
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Table 2: Performance benchmark over six text-only Extractive (Extr) baselines (Lead-2, Lexrank, TextRank, MMR, ICSISumm,
and BERTExtractive), eight text-only Abstrative (Abst) baselines (Seq2Seq, Pointer Generator (PG), CopyTransformer, Long-
former, BERT, BART, T5, and Pegasus), two video-only baselines (Action feature, and Action feature with RNN), and four
Multimodal baselines (HA, FLORAL, MFFG, and ICAF) over the datasets – mTLDRgen and How2. The benchmarks are evaluated
over the Quantitative metric – Rouge (Rouge-1 (R1), Rouge-2 (R2), and Rouge-L (RL)), and Qualitative metric – BERTScore
(BERTSc.) and FEQA.

Type System mTLDR How2
R1 R2 RL BERTSc. FEQA R1 R2 RL BERTSc. FEQA

Extr-text

Lead-2 22.82 4.61 15.47 61.27 32.45 43.96 13.31 39.28 71.56 32.28
LexRank 27.18 6.82 17.22 63.23 34.21 27.93 12.88 16.93 64.52 31.89
TextRank 27.43 6.86 17.41 63.34 34.29 27.49 12.61 16.71 64.55 31.92
MMR 29.54 8.19 18.84 64.59 35.67 28.24 13.12 17.86 64.87 31.98
ICSISumm 31.57 9.52 19.42 65.84 36.14 28.53 13.44 17.93 65.14 32.16
BERTExtractive 31.52 9.49 19.31 65.83 36.13 27.18 12.47 15.38 63.47 31.67

Abst-text

Seq2Seq 23.54 5.61 15.48 62.47 31.57 55.37 23.08 53.86 76.15 36.48
PG 23.59 5.78 16.21 62.71 31.84 51.68 22.63 50.29 73.47 35.37
CopyTransformer 25.63 7.82 18.54 63.11 37.86 52.94 23.25 50.26 73.58 35.43
Longformer 21.37 6.47 15.12 61.05 32.14 49.24 21.39 47.41 72.39 35.28
BERT 24.87 8.85 18.33 62.91 31.89 53.74 23.86 48.06 73.45 35.62
BART 26.13 9.69 19.62 64.24 38.64 53.81 23.89 48.15 73.51 35.68
T5 25.87 9.24 18.63 64.13 38.45 53.21 22.51 47.48 73.42 35.65
Pegasus 26.66 9.83 19.26 64.85 36.98 53.87 23.91 48.17 73.61 35.70

Video only Action features only 26.38 6.47 15.37 62.48 30.41 45.24 24.42 38.47 69.74 31.28
RNN (Action features) 26.73 6.51 15.75 63.14 31.35 48.27 27.74 46.37 72.32 35.11

Multimodal

HA 29.32 11.84 26.18 67.24 39.37 55.82 38.31 54.96 77.15 38.55
FLORAL 31.69 13.54 31.55 69.56 41.19 56.84 39.86 56.93 79.84 39.14
MFFG 33.19 18.88 33.28 71.54 43.13 61.49 44.61 57.21 80.16 41.59
ICAF 36.38 20.54 34.52 73.94 45.63 63.84 44.78 58.24 82.39 42.86
mTLDRgen 41.62 22.69 37.87 78.39 48.46 67.33 48.71 61.83 84.11 44.82

ΔmTLDRgen BEST ↑ 5.24 ↑ 2.15 ↑ 3.35 ↑ 4.45 ↑ 2.83 ↑ 3.49 ↑ 3.93 ↑ 3.59 ↑ 1.72 ↑ 1.96

Table 3: Ablation study to show the efficacy of each module of mTLDRgen.

System mTLDR How2
Rouge-1 Rouge-2 Rouge-L BERTScore Rouge-1 Rouge-2 Rouge-L BERTScore

Transformer 25.63 7.82 18.54 63.11 52.94 23.25 50.26 73.58
+ DFHC 29.37 11.78 23.19 67.81 57.34 28.71 56.02 77.31
+ WRET 34.52 14.82 26.54 72.06 61.12 36.89 58.1 81.44
+ DFHC & WRET 37.34 18.32 32.49 74.58 64.23 42.61 59.02 82.45

mTLDRgen 41.62 22.69 37.87 78.39 67.33 48.71 61.83 84.11

human evaluations for BART (text-only), T5 (text-only), MFFG
(multimodal), FLORAL (multimodal) and mTLDRgen (multimodal).

6.1 Training
The implementation of the mTLDRgen model was carried out by
utilizing the Pytorch 1.8.1 framework on an NVIDIA A6000 GPU
equipped with 46 GB of dedicated memory and CUDA-11 and
cuDNN-7 libraries. The model was initialized with pre-trained
BART language model weights for the encoder and decoder and
fine-tuned on the summarization dataset. In the implementation, the
loss computation was only performed over the target sequence in
adherence to the encoder-decoder paradigm. The hyper-parameters

used in both the pre-training and fine-tuning phases are detailed in
Section A.1, and Table 7 (Supplementary).

6.2 Quantitative Analysis
Table 2 compares the performance of mTLDRgen with that of its
baselines across the How2 and mTLDR datasets. Our results demon-
strate that mTLDRgen outperforms the best baseline, ICAF, with a
Rouge-1 score of 41.62 and a Rouge-L score of 37.87, an improve-
ment of +5.24 and +3.35, respectively. When benchmarked against
the How2 dataset, mTLDRgen exhibits superior results, obtaining
Rouge-1 of 67.33 and Rouge-L of 61.83, outperforming the best base-
line (ICAF) by +3.49 and +3.59 points, respectively. With respect
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Table 4: Comparison of target summary with six models – Extractive (ICSISumm), Abstractive (Pointer Generator (PG), BART,
Pegasus) and multimodal (ICAF and mTLDRgen) models.

Model Output
Target In this paper, we propose an adversarial multi-task learning framework, where the shared and private latent feature

spaces donot interfere with each other. This task is achieved by introducing orthogonality constraints.

ICSISumm To prevent the shared and private latent feature spaces from interfering with each other, we introduce two strategies:
adversarial training and orthogonality constraints.

PG propose multi-task learning for the generative , propose latent feature for multi task learning where the shared
knowledge regarded as off the self knowledge and trasferred to new task.

BART In this paper, we conduct experiment on 16 tasks demonstrate the benefits and propose multi-task learning
framework, The dataset are shared and latent feature spaces. the dataset is prone.

Pegasus In this paper, we propose an multitask learning framework, where we conduct experiments on 16 text classification
tasks. our model is off the shelf and donot interfere with each other.

ICAF we propose an adversarial multi-task framework, where we conduct experiments demostrating private feature
space do not interefere with eachother. The model is regarded as off the shelf and transferred to new task.

mTLDRgen In this paper, we propose an multi-task framework, the shared and private latent feature spaces not interfere with
each other. We conduct experiments on 16 text classification tasks.

to the best text-only abstractive baseline, Pegasus (Rouge-1 and
Rouge-2) and BART (Rouge-L), mTLDRgen shows an improvement
of +14.96 Rouge-1, +12.86 Rouge-2, and +18.25 Rouge-L. Similarly,
mTLDRgen surpasses ICSISumm, the best extractive baseline, with
an improvement of +10.05, +13.17, and +18.45 on Rouge-1, Rouge-2
and Rouge-L, respectively.

We also perform ablations to study the efficacy of individual
modalities and modules of mTLDRgen. Table 5 demonstrates the
performance improvements obtained when all three modalities are
fused, while Table 3 showcases the contribution of individual mod-
ules of mTLDRgen. These results serve to affirm our hypothesis that
models specifically designed for longer summarization sequences
are inadequate in extreme summarization tasks and that the in-
tegration of multiple modalities with text modality enhances the
quality of the generated summary.

Congruency of multi-modalities. The performance of various
unimodal and multimodal text summarization systems is shown
in Table 2. The results demonstrate that for unimodal variants,
the lead2, which was reported to be a strong baseline for datasets
like CNN/Dailymail [21] and MultiNews [14], fails to perform ef-
fectively, indicating that the latent structure of the scientific text
is distinct, and the information has a heterogeneous distribution
throughout the document. In a similar vein, the text-only abstrac-
tive baselines perform inadequately over both the How2 and mTLDR
datasets. On the other hand, the extractive baselines, which are able
to identify the prominent sentences that start with “we propose”
or “we introduce”, perform better than the text-only abstractive
baselines yet still provide only a limited context of the whole article.
Meanwhile, the two video-only baselines display performance that
is comparable to the best abstractive baselines, signifying that multi-
modal features do indeed contribute to generatingmore informative
and coherent summaries. No baselines using audio-only features
were run as audio captures only the amplitude shift and intonations,

which do not constitute a sufficient feature set in the vector space.
As indicated in Table 2, the multimodal baselines outperform the
text-only and video-only baselines. The HA model outperforms
the best abstractive baseline by +2.66 Rouge-1 and +6.92 Rouge-L,
demonstrating the significance of combining multimodal signals
with text-only modalities. The fusion of video with text helps the
model attain better context in the vector space, even the audio
features aid in the mutual alignment of modalities leading to more
diverse and coherent summaries. Evidently, all the remaining mul-
timodal baselines show a remarkable improvement in performance
over all the text-only extractive, text-only abstractive, and video-
based baselines.

Table 5: Performance benchmark for each modality of
mTLDRgen.

Modality Rouge-1 Rouge-2 Rouge-L

Text +Audio 27.46 7.47 19.62
Audio +Video 27.62 7.53 20.11
Text +Video 28.05 7.83 24.49
Text +Audio +Video 41.62 22.69 37.87

6.3 Qualitative Analysis
We also conduct a qualitative evaluation of the generated sum-
maries utilizing BERTScore and FEQA (c.f. Table 2). Both metrics
use the text modality from the source and target to assess the qual-
ity. On the mTLDR data, mTLDRgen achieves 78.39 BERTScore and
48.46 FEQA, surpassing the best baseline (ICAF) by +4.45 and +2.83
points, respectively. For the How2 dataset, mTLDRgen obtains 84.11
BERTScore and 44.82 FEQA, outperforming the best baseline (ICAF)
by +1.72 and +1.96 points, respectively. Similar to the quantitative
benchmarks, the multimodal baselines outperform the text-only



Fusing Multimodal Signals on Hyper-complex Space for Extreme Abstractive Text Summarization (TL;DR) of Scientific ContentsKDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 6: Human evaluation scores over the metrics – Informativeness (Infor.), Fluency, Coherence, and Relevance for the
text-based baselines (BART and T5), multimodal baselines (MFFG, FLORAL, and mTLDRgen) on the mTLDRgen and How datasets.

Modality System mTLDR How2

Infor. Fluency Coherence Relevance Infor. Fluency Coherence Relevance

Abstractive-text BART 2.81 2.51 2.94 2.85 2.34 2.37 2.46 2.54
Abstractive-text T5 2.78 2.49 2.81 2.74 2.33 2.28 2.43 2.54
Multimodal FLORAL 3.2 3.03 3.02 3.11 3.13 3.14 3.08 3.13
Multimodal MFFG 3.21 3.05 3.09 3.11 3.17 3.21 3.04 3.11
Multimodal mTLDRgen 3.46 3.32 3.27 3.29 3.34 3.27 3.21 3.18

extractive, abstractive, and video-only baselines by a substantial
margin.

6.4 Human Evaluation
The quantitative enhancements are further reinforced by human
assessments. As shown in Table 6, mTLDRgenscores highest over
the datasets – mTLDR and How2, demonstrating that the generated
summaries are highly faithful, pertinent, and coherent in compari-
son to the other baselines. Although mTLDRgen demonstrates some
deficiencies in the coherence criterion in the human evaluations, it
still performs significantly better than the other baselines. A man-
ual examination of the generated summaries and an analysis of the
findings are presented in Section 6.5.

6.5 Error Analysis
The limitations of extractive and abstractive baselines in generating
extreme summaries are evident. Extractive systems rely on direct
copying of phrases from the source document, often resulting in a
single-line summary containing limited information diversity. This
is reflected in their performance compared to abstractive text-only
and a few multimodal (HA and FLORAL) baselines, as seen in Table
4. The text-only abstractive baselines like Seq2Seq and PG fail to
extract the paper’s main contributions, while Transformer based
methods like Longformer, BERT, etc., struggle to summarize the
contributions in very few lines.

However, mTLDRgen stands out as it is able to condense the three
key contributions of the source article into a single sentence, demon-
strating superiority over the other baselines. A manual inspection
of instances where mTLDRgenfailed to generate a good summary re-
veals that the cause was often due to noisy text modality extracted
from the article pdf, leading to non-coherent connections between
phrases. Further, the data noise in the video and audio modalities
arising due to different aspect ratios of presentation and speaker
and non-native English accent speakers adds to the perplexity of
modality alignment.

7 DEPLOYMENT - CONTINUOUS HUMAN
FEEDBACK

The performance improvements across the quantitative and qualita-
tive metrics over the mTLDR dataset motivated us to assess mTLDRgen
more rigorously. After controlled alpha testing of mTLDRgen using
human evaluations, we deployed mTLDRgen as a web-based API
(the technical details of API are discussed in Section A.2 (Supple-
mentary)) in an in-house tool. The API is currently hosted on a

local server with an A6000 (48 GB) GPU, and the endpoints are
accessible across the institute. For input, the API takes either a web
URL consisting of direct links to the video and the article pdf or a
separate file pointer to upload files directly from the local worksta-
tion. The current response time for the API is 2 − 3 minutes, which
is considerably high as a wait time. However, to cut down on the
revert-back time, we cache all the responses to provide immediate
output to the already processed queries. During the production
stage, our aim will be to reduce the inference time to less than 1
minute. However, to achieve this, we will aim to optimize the model
by reducing model parameters and distilling it. Catering to the data
regulations, we remove all the videos and article pdf’s from our
system after processing and only store the generated summaries
and metadata for mapping queries to the cached data. The meta-
data includes the article title, author description, keywords, and
month/year of publishing. Further, we do not track users’ identities
nor store any user-specific information on our servers.

8 CONCLUSION
We introduced a novel task of extreme abstractive text summariza-
tion using multimodal inputs. we curated mTLDR, a unique large-
scale dataset for extreme abstractive text summarization that en-
compasses videos, audio, and text, as well as both author-written
and expert-annotated summaries. Subsequently, we introduced
mTLDRgen, a novel model that employs a dual fused hyper-complex
Transformer and a Wasserstein Riemannian Encoder Transformer
to efficiently capture the relationships between different modal-
ities in a hyper-complex and latent geometric space. The hyper-
complex Transformer captures the intrinsic properties between
the modalities, while the Wasserstein Riemannian Encoder Trans-
former captures the latent structures of the modalities in the latent
space geometry, enabling the model to generate diverse sentences.
To assess the mTLDRgen, we conducted thorough experiments on
mTLDR and How2 datasets and compared their performance with 20
baselines. Overall, mTLDRgen demonstrated superior performance
both qualitatively and quantitatively.
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A EXPERIMENTATION AND DEPLOYMENT
We discuss the experimentation environment and the deployment
parameters in this section.

A.1 Experimentation Details
We ran several sets of experiments over our proposed mTLDRgen
model to figure out the most optimal set of hyperparameters. Table
7 describes the most optimal hyperparameters for mTLDRgen over
the mTLDR dataset. We initialize the mTLDRgen weights using the
pre-trained BART and then train the network further over the
mTLDR data. During training, we set the learning rate as 3𝑒 − 5 and
set the lambda value as 18. The gradients are accumulated for five
iterations, and tri-gram blocking is used to penalize the decoder.

Table 7: HyperParameters used to train mTLDRgen.

Parameter Value
Epochs 55
Accumulate gradient steps 5
Ranking loss margin 0.001
MLE weight 0.1
Warmup steps 10000
Max learning rate 3e-5
Max source length 512
Training max summary length 36
Testing max summary length 40
Num of Beams 4
GPU 2 X A6000
VMemory 48GB

We train themodel till loss converges and the validation accuracy
does not improve for five continuous iterations. Figure 3 shows the
variation of loss till 2000 iterations.
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Figure 3: Loss momentum of mTLDRgen over the mTLDR dataset.

A.2 Deployment
The web API for mTLDRgen has been created using the Flask 5 frame-
work. As Flask only allows single-user access at a given time, the
5https://flask.palletsprojects.com/en/2.2.x/
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API is running on top of the Gunicorn 6 framework, allowing multi-
ple users to access the API at the same time. At a particular instance,
the API is able to handle a load of four concurrent requests without
major variation in inference time. The trained mTLDRgen model is
hosted separately as an API running on Docker, giving the users
option to either generate TLDR summaries using the web inter-
face or directly by calling the mTLDRgen using any programming
language.

B HUMAN EVALUATION SETUP
We evaluate the generated summaries over four [14] parameters
– Informativeness, Fluency, Coherence and Relevance. Figure ??
shows the form utilised by human evaluators to benchmark the
generated summaries against the competing baselines.

(1) Informativeness: The generated summary should house a
certain level of information. The information can be in direct
correlation with the source document or the target summary.

(2) Fluency: It encapsulates how the individual sentence stands
in the generated summary. Every sentence in the summary
should be grammatically and syntactically correct and should
have no capitalization or punctuation errors.

(3) Coherence: It analyzes how the summary as a whole makes
sense. The summary should be human-readable and should
make sense contextually.

(4) Relevance: It computes how much information from the
source document is available in the generated summary.
The information on the generated summary should only
come from the source document; any information generated
outside the source document is termed as a hallucinating
summary.

6https://gunicorn.org/
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Figure 4: Human Evaluation form for collection feedback over the mTLDRgen and baseline generated summaries.
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