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Abstract
Information propagation on social networks could
be modeled as cascades, and many efforts have
been made to predict the future popularity of cas-
cades. However, most of the existing research treats
a cascade as an individual sequence. Actually, the
cascades might be correlated with each other due
to the shared users or similar topics. Moreover,
the preferences of users and semantics of a cas-
cade are usually continuously evolving over time.
In this paper, we propose a continuous-time graph
learning method for cascade popularity prediction,
which first connects different cascades via a univer-
sal sequence of user-cascade and user-user inter-
actions and then chronologically learns on the se-
quence by maintaining the dynamic states of users
and cascades. Specifically, for each interaction, we
present an evolution learning module to continu-
ously update the dynamic states of the related users
and cascade based on their currently encoded mes-
sages and previous dynamic states. We also de-
vise a cascade representation learning component
to embed the temporal information and structural
information carried by the cascade. Experiments
on real-world datasets demonstrate the superiority
and rationality of our approach.

1 Introduction
The information propagation, aka the information cascade, is
ubiquitous on online social networks, which records human
behaviors in posting and accessing information. For example,
on Twitter, a tweet posted by a user may disseminate to other
users, and such retweeting behaviors between users can be de-
noted as an information cascade. Predicting the popularity of
such information cascades could help people understand the
information propagation better and is crucial for numerous
applications such as viral marketing [Leskovec et al., 2007],
scientific impact qualification [Guo and Suo, 2014] and item
recommendation [Wu et al., 2019].

Up to now, lots of attempts have been made on this
problem. In the early stage, researchers extracted man-
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Figure 1: Different from existing methods which mainly learn
on each cascade’s own sequence, our method learns continu-
ously evolving representations of cascades and users collaboratively,
which can model the correlation between cascades and continuously
dynamic user preferences.

ual features to represent a cascade [Cheng et al., 2014;
Szabó and Huberman, 2010]. However, these methods are
based on hand-designed features with a relatively large num-
ber of human efforts and may lose useful information dur-
ing the diffusion behavior of a cascade. Different from
feature-based methods, some researchers considered the cas-
cade as a diffusion sequence and employed sequential mod-
els like recurrent neural networks to capture the evolution
pattern of cascades [Liao et al., 2019; Cao et al., 2017;
Yang et al., 2019], while the structural information within
the cascade has not been fully exploited yet. Recently,
graph representation learning methods were introduced to
further improve the prediction performance [Li et al., 2017;
Chen et al., 2019b; Chen et al., 2019a; Xu et al., 2021;
Tang et al., 2021]. These methods utilized the social net-
work and cascade graph to learn the structural and temporal
information within each cascade.

Although insightful, most of the existing methods solely
predict the popularity of each cascade within its own se-
quence, see Figure 1 (b). We argue that there are two essen-
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tial factors that are not well considered by previous methods.
Firstly, different cascades can be correlated with each other
because of the shared users or similar semantics. For exam-
ple, in Figure 1 (b), we aim to predict the popularity of cas-
cade c1 and existing methods can only learn from the prop-
agation sequence of c1 itself. However, if we additionally
consider cascade c2, we can find that both c1 and c2 contain
user u2 which seems to be a popular user with many retweets,
and this is helpful for predicting the popularity of c1. Sec-
ondly, the states of users are often evolving in a continuous
manner (e.g., a user is likely to gradually change his interests
according to the information he/she received from the social
network at different times), which cannot be captured by ex-
isting methods either.

To tackle the above issues, we propose a Continuous-Time
graph learning method for Cascade Popularity prediction,
namely CTCP. To model the correlation between cascades,
we first combine all cascades into a dynamic diffusion graph
as shown in Figure 1 (c), which can be considered as a uni-
versal sequence of diffusion behaviors (i.e, user-cascade and
user-user interactions). Then, we propose an evolution learn-
ing module to chronologically learn on each diffusion behav-
ior by maintaining a dynamic representation for each user and
cascade that evolves continuously as the diffusion behavior
happens. When a diffusion behavior happens, this module
first encodes the information of a diffusion behavior into a
message and then fuses the dynamic representations of re-
lated users and cascades with the generated message. Next,
a cascade representation learning model is proposed to gen-
erate the static and dynamic cascade embeddings by aggre-
gating user representations from both temporal and structural
perspectives. Based on the generated embeddings, the pre-
diction module finally computes the cascade popularity. The
main contributions of the paper are summarized as follows.

• Different from previous methods that only learn from
the own sequence of each cascade, we propose a
continuous-time graph learning method to explore the
correlations of different cascades by a dynamic diffu-
sion graph and explicitly learn the dynamic preferences
of users in the network.

• We maintain dynamic representations for users and cas-
cades and design an evolution learning module to encode
the information of a diffusion behavior into a message
and continuously update the dynamic representations by
fusing the previous dynamic representations with the
message in a recurrent manner.

• A cascade representation learning module is proposed to
capture the temporal and structural information of a cas-
cade, which leverages the sequence and graph structure
to aggregate representations of users.

2 Related Work
2.1 Cascade Popularity Prediction
The cascade popularity prediction problem aims at predict-
ing the future size of an information cascade. Many efforts
have been paid to this problem. In the early stage, researchers
represented a cascade as some handcrafted features such

as content features and user attributes [Cheng et al., 2014;
Szabó and Huberman, 2010]. However, these methods need
a relatively large number of human labor to design or select
and have limited generalization ability.

Different from the feature-based methods, some re-
searchers considered the cascade as a diffusion sequence of
users and employed the sequence-based model to learn the
evolution pattern of a cascade [Liao et al., 2019; Cao et al.,
2017; Yang et al., 2019]. For example, Cao et al.[2017] uti-
lized the Gated Recurrent Unit (GRU) to learn a path-level
representation and aggregate path representation into cascade
representation by different learnable weights. Though the
sequence-based methods achieve considerable performance,
the structural information of cascades is not well explored.

To fully utilize the temporal and structural information
within cascades, some graph-based methods have been pro-
posed [Li et al., 2017; Chen et al., 2019b; Chen et al., 2019a;
Xu et al., 2021; Tang et al., 2021], which modeled a single
cascade as a graph evolving with time and leveraged the graph
representation learning method to learn cascade representa-
tions from cascade graphs. However, these methods predict
the popularity of each cascade separately and thus neglect the
correlation between cascades. Some recent methods model
the evolution of multiple cascades by considering it as a se-
quence of graph snapshots sampled at regularly-spaced times
[Wang et al., 2021; Sun et al., 2022], but these methods dis-
crete the continuous timestamps into several regularly-spaced
time steps and thus can not model the continuous evolution
of user preferences. Moreover, these methods may have high
memory overhead, because it needs to load a whole graph
snapshot at one time.

In summary, although insightful, existing methods have not
well addressed the issues of correlation between cascades and
the dynamic evolution of user preferences.

2.2 Graph Representation Learning
In recent years, the Graph Neural Network (GNN) has
achieved superior performance on graph representation learn-
ing. To be better in accordance with real-world scenar-
ios, some researchers have further designed heterogeneous
GNNs and dynamic GNNs [Kazemi et al., 2020; Wang et
al., 2020; Huang et al., 2021]. For example, Schlichtkrull
et al.[2018] focused on the relation learning in knowledge
graphs. Wang et al.[2019] and Hu et al.[2020] studied
heterogeneous graphs based on meta-paths and the atten-
tion mechanism. Some researchers [Pareja et al., 2020;
Sankar et al., 2020] treated a dynamic graph as a sequence of
snapshots, while others [Xu et al., 2020; Chang et al., 2020;
Rossi et al., 2020] modeled each dynamic graph as a temporal
graph or a sequence of events.

In this paper, we investigate the correlation between cas-
cades and the dynamic user preferences by considering the
evolution of cascades as a continuous-time graph.

3 Problem Formulation
Cascade. Given a set of users U , a cascade c records
the diffusion process of a message m among the users
U . Specifically, we use a chronological sequence gc(t) =



{(uc
i , v

c
i , t

c
i )}i=1,...,|gc(t)| to represent the growth process of

cascade c until time t, where (uc
i , v

c
i , t

c
i ) indicates that vci for-

wards the message m from uc
i (or we can say that vi partici-

pates in cascade c through ui). In addition, we use (uc
0, t

c
0) to

denote that uc
0 publishes the message m at tc0 (or we can say

that uc
0 begins cascade c at tc0).

Diffusion Graph. Based on the above definitions, we use
the diffusion graph Gt

d = {(ui, vi, ci, ti)|ti < t} to denote the
diffusion process of all cascades until t. Here (ui, vi, ci, ti) is
a diffusion behavior representing that vi participates in cas-
cade ci through ui at ti. The diffusion graph Gt

d can be con-
sidered as a chronological sequence of diffusion behaviors as
shown in Figure 1 (c).

Cascade Prediction. Given a cascade c begins at tc0, after
observing it for time to, we want to predict its incremental
popularity ∆Pc = |gc(tc0 + tp)| − |gc(tc0 + to)| from tc0 + to
to tc0 + tp, where tp >> to is the prediction time.

Most of the previous methods consider the task as a sin-
gle cascade prediction problem, that is, learning a function
f : gc(tc0 + to) → ∆Pc that predicts the incremental popu-
larity of a cascade only based on its own historical observa-
tion. However, the collaborative signals between the cascades
are ignored, which motivates us to design our new method
to consider other cascades when predicting the incremental
popularity of a cascade. Specifically, we learn a function
f : gc(tc0 + to) × G

tc0+to
d → ∆Pc which not only considers

the information of a single cascade but also takes the histori-
cal diffusion on the social network into account.

4 Methodology
As shown in Figure 2, we first consider all cascades into a
chronological sequence of diffusion behaviors (i.e., the dif-
fusion graph). Then we learn on each diffusion behavior se-
quentially, where we maintain continuously evolving repre-
sentations for cascades and users to explore the dynamic pref-
erence of users and the correlation between cascades. Dur-
ing the sequential learning process, whenever the observation
time to + tc0 of a cascade c is reached, we predict its incre-
mental popularity ∆Pc.

Specifically, our method consists of three components: 1)
Evolution learning module maintains dynamic states (i.e., the
dynamic representation) for users and cascades, which mod-
els cascades in diffusion behavior level (micro). 2) Cascade
representation learning module generates the embeddings of
cascades by aggregating user representations from different
perspectives, which models cascades in a diffusion structure
level (macro). 3) Prediction module gives the prediction of
the incremental popularity of cascades.

4.1 Evolution Learning Module
Dynamic States. We first introduce the dynamic states for
users and cascades. From the perspective of information dif-
fusion, there are two roles of a user: originator and receiver.
For example, in a diffusion behavior (u, v, c, t), user u acts
as the originator of the message, and user v acts as the re-
ceiver of the message. Thus, we maintain two types of dy-
namic states sou(t) and sru(t) for a user to describe his orig-
inator role and receiver role respectively. Besides, we main-

tain a dynamic state sc(t) for every cascade c to memorize its
diffusion history, which can help users get information from
previous participating users in the cascade. The above dy-
namic states are initialized to zero vectors and learned from
the global diffusion behavior sequence.

Dynamic State Learning. When a diffusion behavior
(u, v, c, t) happens, the dynamic states of the corresponding
users and cascade should be updated. Naturally, the behav-
iors of a user (cascade) can be considered as a sequence and
sequential models like the recurrent neural network can be
employed to learn dynamic states from the sequence of a user
(cascade). In addition to the own behaviors of a user (cas-
cade), there are also global dependencies needed to be con-
sidered. For example, when a user u participates in a diffu-
sion behavior (u, v, c, t), he may also be influenced by the
users who previously participated in the cascade c. To this
end, we employ a recurrent neural network fr(·) to update the
dynamic states of users and cascades globally. Specifically,
when a diffusion behavior (u, v, c, t) happens, we update the
states of u, v, c by fr(·). The updating process consists of two
steps: interaction encoding and state updating. In the interac-
tion encoding, we encode the information of diffusion behav-
ior (u, v, c, t) and generate message mu(t), mv(t), mc(t)
for u, v and c to guide the subsequent state updating process.
Assuming the state of u before t is sou(t

−), we generate mes-
sage representation for user u by the following mechanism,

f t
u = [coswr

1∆tu, cosw
r
2∆tu, ..., cosw

r
n∆tu], (1)

mu(t) = σ(W r[sou(t
−)||srv(t−)||sc(t−)||f t

u] + br), (2)

where || is the concatenation operation, ∆tu is the time inter-
val since the last updating of users u (i.e., ∆tu = t− t−u and
t−u is the last time where u was updated), and f t

u is the tem-
poral feature learned from a series of cosine basis functions.

After generating the message representation, we fuse the
old dynamic state sou(t

−) with the message representation
mu(t) to get the updated states sou(t) by GRU [Cho et al.,
2014],

gi = σ(Wi,ss
o
u(t

−) +Wi,mmu(t) + bi),

gf = σ(Wf,ss
o
u(t

−) +Wf,mmu(t) + bf ),

ŝou(t) = tanh(Wmmu(t) + gi ⊙ (Wss
o
u(t

−) + bs) + b),

sou(t) = gf ⊙ sou(t) + (1− gf )⊙ ŝou(t
−),

(3)

The updating process of user v and cascade c is the same as
user u in addition to different learnable parameters.

4.2 Cascade Representation Learning Module
In this module, we generate embeddings for cascades by ag-
gregating representations of participating users. Specifically,
we learn the temporal and structural characteristics of a cas-
cade by leveraging the diffusion sequence and cascade graph
to aggregate representations of users respectively. Besides
the dynamic states sou(t) and sru(t) of users, we also intro-
duce the static state su to represent the static preference of a
user u. The static state is initialized randomly and learnable
during the training process.

Temporal Learning. Given a cascade c, we or-
ganize it as a diffusion sequence of users Uc =



Figure 2: Framework of the proposed method. It consists of an evolution learning module to model the dynamics of user preferences and the
correlation between cascades, a cascade representation learning module to capture the temporal and structural information within a cascade,
and a prediction module to give future popularity. The popularity of cascade is predicted according to the most recent representations.

(u1, t1), (u2, t2), ..., (un, tn) where (ui, ti) indicates that
user ui participate in the cascade c at ti after the publication
of the cascade. The target of this module is to learn the tem-
poral pattern from the diffusion sequence such as the short-
term outbreak of user participation. The direct way to learn
the temporal pattern is feeding participating users’ represen-
tations sequentially into a recurrent neural network, however,
it may neglect the time information in the diffusion sequence
since it can not distinguish users participating at different
times. Inspired by the position embedding technics [Vaswani
et al., 2017], we divide the observation time to into nt slots
[0, t0

nt
), [ t0nt

, 2 t0
nt
)..., [(nt − 1) t0

nt
, to) and preserve a learnable

embedding eti for every time interval [i t0nt
, (i + 1) t0

nt
) to dis-

tinguish users that participate in the cascade at different time.
Besides, we also introduce another learnable parameter ep

to strengthen the path information, where epi is a position
embedding for the ith participating users. We get the user
embedding zs

ui
by first adding these two embeddings to the

states of users and then feeding the sequence of user embed-
dings to the Long Short-Term Memory (LSTM) [Hochreiter
and Schmidhuber, 1997] to get the cascade temporal embed-
ding hs

c,t, that is,

hs
c,t = LSTMs([zs

u1
, zs

u2
, ...,zs

un
]), (4)

zs
ui

= sui
+ et[ti] + epi , (5)

where [ti] is the time slot that ti belongs to, i.e, [ti] ∗ t0
nt

≤
ti < ([ti] + 1) ∗ t0

nt
. Here the superscript of hs

c,t means it
is the static temporal representation and we also generate a
dynamic temporal representation hd

c,t by the above equation
except using different LSTM parameters and user representa-
tions (i.e., dynamic states).

Structural Learning. Besides the order and time interval
of participating users, the cascade graph also plays an im-
portant role in popularity prediction. For example, a deeper

cascade may get more popularity since it influences the users
who are far away from the original user [Cheng et al., 2014].
The cascade graph can be considered as a directed acyclic
graph (DAG) with a root node (the user who posts the mes-
sage), where a path from the root node to other nodes rep-
resents a diffusion process of a message in the social net-
work. Though graph neural networks like GCN can learn
graph structure, it may be difficult to model deep cascade
paths [Tang et al., 2021]. Inspired by [Tai et al., 2015;
Ducci et al., 2020], we employ a modified LSTM and aggre-
gate representations of users on the cascade graph along the
direction of information flow. Formally, let S(u) and T (u) be
the users that u receives messages from and sends messages
to, i.e., there are edges pointing from S(u) to u and u to T (u).
Then we employ the following mechanism to propagate the
information from root nodes to leaf nodes.

h̃s
u,↑ =

∑
v∈S(u)

hs
v,↑,

isu,↑ = σ(W s
i,↑[su||h̃s

u,↑] + bsi,↑),

fs
uv,↑ = σ(W s

f,↑[su||hs
v,↑] + bsf,↑),

os
u,↑ = σ(W s

o [su||h̃s
u,↑] + bso,↑),

gs
u,↑ = tanh(W s

g,↑[su||h̃s
u,↑] + bsg,↑),

csu,↑ = isu,↑ ⊙ gs
u,↑ +

∑
v∈S(u)

fs
uv,↑ ⊙ csv,↑

hs
u,↑ = os

u,↑ ⊙ tanh(csu,↑),

(6)

After propagating the information in the graph, we sum the
leaf nodes’ representations to get the cascade embedding
hs
c,↑ =

∑
hs
leaf,↑. Besides, we reverse the edge direction

of the cascade graph and generate another cascade represen-
tation hs

c↓ from leaf to root. Finally, we concatenate the hs
c,↑

and hs
c,↓ and feed it to an MLP to get the final structural rep-



resentation hs
c,s. Here the superscript of hs

c,s represents the
static structural embedding of the cascade as in the temporal
learning module. We also generate the dynamic representa-
tion hd

c,s by the same mechanism in Equation (6) except using
different parameters and user representations.

Embedding Fusion. In this module, we fuse the temporal
embedding and structural embedding into a cascade embed-
ding. For static embedding hs

c,t and hs
c,s, we get the merged

embedding hs
c by concatenating them and then feed it into

an MLP. The merge process of the dynamic embedding is
slightly different from that of the static, where we split the
participating users into two parts: the users u and v partici-
pating in the last diffusion (u, v, c, t) of a cascade c and oth-
ers. The last two users u, v’s dynamic states are used to merge
with the dynamic cascade state sc(t) and the others are used
to generate the temporal and structural embedding hd

c,t and
hd
c,s. The reason for this is that the last two users’ dynamic

states are updated from sou(t
−), srv(t

−) to sou(t), s
r
v(t) by the

updater in (3) and this make the gradients can be propagated
back to the updater through them, which makes them different
from the dynamic states of other users. Formally, the merge
process of the dynamic representation can be represented as

hd
c = σ(Wa[h

d
c,t||hd

c,s||h̃d
c ]), (7)

h̃d = σ(Wb[s̃c(t)||sou(t)||srv(t)]), (8)

s̃c(t) = sc(t) + eg[tc0]
, (9)

where tco is the publication time of c and eg is another position
embedding for publication time like Equation (5).

4.3 Prediction Module
In this module, we give the prediction of incremental popu-
larity by merging the prediction result from static embedding
hs
c and dynamic embedding hd

c .

∆̂P c = λfstatic(h
s
c) + (1− λ)fdynamic(h

d
c), (10)

where the fstatic(·) and fdynamic(·) are two MLP functions and
λ is a hyperparameter to control the weight of static result and
dynamic result.

We use the Mean Squared Logarithmic Error (MSLE) as
the loss function, which can be formulated as follows,

J (θ) =
1

n

∑
c

(log(∆Pc)− log(∆̂Pc))
2, (11)

where n is the number of training cascades.

5 Experiments
In this section, we conduct experiments on three datasets to
evaluate the effectiveness of our approach.

5.1 Descriptions of Datasets
We use three real-world datasets in the experiments, includ-
ing the cascades in social platforms (Twitter and Weibo) and
academic networks (APS).

• Twitter [Weng et al., 2013] contains the tweets pub-
lished between Mar 24 and Apr 25, 2012 on Twitter and
their retweets during this period. Every cascade in this
dataset represents the diffusion process of a hashtag.

• Weibo [Cao et al., 2017] was collected on Sina Weibo
which is one of the most popular Chinese microblog
platform. It contains posts published on July 1st,2016
and their retweets during this period. Every cascade in
this dataset represents the diffusion process of a post.

• APS 1 contains papers published on American Physical
Society (APS) journals and their citation relationships
before 2017. Every cascade in this dataset represents
the process of obtaining citations for a paper. Following
previous works [Cao et al., 2017], transformation and
preprocessing are taken to make paper citation predic-
tion analogy to the retweet prediction.

Following Xu et al.[2021], we randomly select 70%, 15%
and 15% of the cascades for training, validating and testing.
For data preprocessing, we set the observation window of a
cascade to 2 days, 1 hour and 5 years on Twitter, Weibo and
APS. For Weibo and Twitter, we predict cascades’ popularity
at the end of the dataset, while we predict cacades’ popular-
ity 20 years after its publication for APS. The cascades whose
observed popularity |c(tc0 + to)| is less than 10 are discarded
and for cascades whose |c(tc0+ to)| is more than 100, we only
select the first 100 participants. Moreover, to ensure that there
are adequate times for cascades to accumulate popularity and
to avoid the effect of diurnal rhythm [Cao et al., 2017], we
select the cascades published before April 4th, published be-
tween 8:00 and 18:00, and published before 1997 on Twit-
ter, Weibo and APS, respectively. The above preprocess-
ing process also follows previous methods [Xu et al., 2021;
Cao et al., 2017]. Table 1 shows the statistics of the datasets.

Datasets #Users #Cascades #Retweets

Twitter 199,005 19,718 602,253

Weibo 918,852 39,076 1,572,287

APS 218,323 48,575 939,686

Table 1: Statistics of datasets.

5.2 Baselines
We compare our method with the following baselines, where
the first two methods (i.e., XGBoost and MLP) additionally
need hand-designed features (see details in Section 5.4):

• XGBoost belongs to the gradient boosting algorithm,
which is a widely used machine learning method [Chen
and Guestrin, 2016].

• MLP uses the multilayer perceptron to compute on the
features of each cascade.

• DeepHawkes [Cao et al., 2017] treats each cascade as
multiple diffusion paths of users and learns sequential
information of cascades through the GRU.

• DFTC [Liao et al., 2019] considers each cascade as a
popularity count sequence and uses the Convolutional
Neural Network (CNN), LSTM and attention mecha-
nism to learn the cascade representation.

1https://journals.aps.org/datasets

https://journals.aps.org/datasets


• MS-HGAT [Sun et al., 2022] builds a sequence of
regularly-sampled hypergraphs that contain multiple
cascades and users, and then learns on hypergraphs for
computing the representations of cascades.

• CasCN [Chen et al., 2019b] treats each cascade as a
graph sequence and uses the GNN and LSTM to learn
cascade representations.

• TempCas [Tang et al., 2021] additionally designs a se-
quence modeling method to capture macroscopic tem-
poral patterns apart from learning on the cascade graph.

• CasFlow [Xu et al., 2021] is the state-of-the-art method
for cascade prediction, which first learns users’ repre-
sentations from the social network and the cascade graph
and then employs the GRU and Variational AutoEncoder
(VAE) to get representations of cascades.

5.3 Evaluation Metrics
We choose four widely used metrics to evaluate the perfor-
mance of the compared methods, including Mean Squared
Logarithmic Error (MSLE), Mean Absolute Logarithmic Er-
ror (MALE), Mean Absolute Percentage Error (MAPE) and
Pearson Correlation Coefficient (PCC). Among these metrics,
MSLE, MAPE and MALE evaluate the prediction error be-
tween the predicted value and the ground truth from different
aspects and PCC measures the correlation between predicted
value and the ground truth.

5.4 Experimental Settings
For XGBoost and MLP, we follow Cheng et al.[2014] and
extract five types of features (i.e., edge number, max depth,
average depth, breath of cascade graph, and publication time
of the cascade) as the hand-designed cascade features. We
set the dimension of dynamic states of users and cascades,
as well as the cascade embedding to 64. The dimension of
position embedding is set to 16. The time slot number nt is
set to 20 and the fusion weight λ is 0.1. For training, we adopt
the Adam optimizer and use the early stopping strategy with
a patience of 15. The learning rate and batch size are set to
0.0001 and 50. Our code can be found at https://github.com/
lxd99/CTCP.

5.5 Performance Comparison
Table 2 reports the performance of different methods, and
some conclusions can be summarized as follows.

Among the three groups of methods, feature-based mod-
els perform the worst among all baselines, which reveals that
there are complex evolution patterns of the cascade size that
can not be captured by the hand-designed features. Moreover,
graph-based models show better performance than sequence-
based models, implying the necessity of exploiting the struc-
tural and temporal information carried in the cascade graph.

CTCP achieves significant performance improvement w.r.t.
the state-of-the-art baseline (i.e., CasFlow) on Twitter
and APS, demonstrating the effectiveness of the proposed
method. This improvement may be due to the fact that we
learn the dynamic representations of cascades and users col-
laboratively, which can capture the correlation between cas-
cades and the dynamic user preferences outside of a single

cascade. The insignificant improvement of CTCP on Weibo
may be due to the short time period of Weibo (1 day compared
to 1 month and more than 100 years on Twitter and APS re-
spectively) and the preferences of users may not evolve dur-
ing such a short period, which makes CTCP have no advan-
tages over CasFlow. Additionally, modeling multiple cas-
cades via the sequence of graph snapshots like MS-HGAT
does not achieve considerable performance. Because the dif-
fusion behaviors within a snapshot are thought to happen at
the same time which will lose fine-grained temporal informa-
tion. Moreover, MS-HGAT needs to load the snapshot into
memory at one time, which makes it can only run on the
smallest dataset (i.e., Twitter).

5.6 Sensitivity to Publication Time
To explore the sensitivity of different models to the publica-
tion time of cascades, we plot models’ performance on cas-
cades with different publication times on Twitter and APS.
Specifically, we divide the cascade into five groups according
to their publication time: cascade whose publication time is
at the 0th to 20th, 20th to 40th, 40th to 60th, 60th to 80th
and 80th to 100th percentile, and plot the best five models’
performance. From Figure 3, we can observe that CTCP can
achieve considerable performance on different cascades con-
sistently. Besides, as time goes on, the performance of CTCP
consistently improves on these two datasets. This is because
the evolution learning module of CTCP keeps updating the
dynamic states of users and as time goes on more and more
user behaviors are observed, which provides richer informa-
tion to model the preference of users. Other models only learn
from the own diffusion process of cascades and can not learn
this dependency.
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Figure 3: Performance on cascades with different publication times.
The horizontal axis indicates the percentile range of the publica-
tion time of cascades and the vertical axis is the average prediction
MSLE of cascade in that range.

5.7 Ablation Study
We compare CTCP with the following variations on Twitter
and APS to investigate the contribution of submodules to the
prediction performance.

• w/o EL removes the evolution learning module.

• w/o SE removes the static representation of users.

• w/o SL: removes the structural learning module in the
cascade embedding learning process.

https://github.com/lxd99/CTCP
https://github.com/lxd99/CTCP


Model Twitter Weibo APS

MSLE MALE MAPE PCC MSLE MALE MAPE PCC MSLE MALE MAPE PCC

XGBoost 11.5330 2.9871 0.8571 0.3792 3.6253 1.3736 0.3571 0.6493 2.5808 1.2559 0.3437 0.4762
MLP 11.9105 2.9712 0.9324 0.3733 3.9370 1.4409 0.3812 0.6098 2.6075 1.2577 0.3516 0.4787

DeepHawkes 7.7795 2.1553 0.5547 0.6500 4.2520 1.4658 0.3998 0.5670 2.3356 1.2001 0.3158 0.5524
DFTC 5.9173 1.8426 0.4851 0.7495 2.9370 1.2046 0.2959 0.7296 2.0357 1.1159 0.2943 0.6247

CasCN 7.1021 2.0567 0.5231 0.6940 3.7714 1.4040 0.3612 0.6707 2.1248 1.1358 0.3035 0.6062
MS-HGAT 5.9992 1.9006 0.4741 0.7507 OOM OOM OOM OOM OOM OOM OOM OOM
TempCas 5.5870 1.7584 0.4574 0.7651 2.7453 1.1702 0.2786 0.7500 2.0043 1.1022 0.2957 0.6346
CasFlow 5.2549 1.5775 0.4031 0.7847 2.6336 1.1230 0.2687 0.7619 2.0064 1.1053 0.2936 0.6320

CTCP 4.6916 1.5668 0.3562 0.8136 2.5929 1.1414 0.2723 0.7667 1.6289 0.9906 0.2611 0.7176

Table 2: Performance of all methods in three datasets, where the methods can be divided into three categories: feature-based, sequence-based,
and graph-based methods from top to bottom in the table. The best results appear in bold and OOM indicates the out-of-memory error.

From Figure 4, we can observe that: Firstly the performance
of w/o EL and w/o SE varies on APS and Twitter, for ex-
ample, w/o SE achieves the best performance on Twitter
and the worst performance on APS. This indicates that the
growth of the cascade size is controlled by multiple factors
and it is necessary to consider the dynamic preference and
static preference of users simultaneously. Secondly, the struc-
tural learning module utilizes the cascade graph to gener-
ate the cascade embedding which helps improve the predic-
tion performance by capturing the evolution pattern of a cas-
cade at a macro level.
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Figure 4: Ablation study on Twitter and APS.

5.8 Cascade Representations Projection

To confirm the effectiveness of the learned cascade represen-
tations, we project the cascade representations of CTCP and
CasFlow on Twitter into a two-dimensional space, using t-
NSE [van der Maaten and Hinton, 2008]. Results are repre-
sented in Figure 5. Remarkably, we find that the learned rep-
resentations of CTCP can capture the evolution pattern of cas-
cade popularity, suggested by the fact that from right-top to
left-bottom the node color of CTCP changes from red to dark
blue continuously in Figure 5 (a). While for CasFlow, nodes
with different colors are mixed. This may be because CTCP
models the correlation of cascades while CasFlow does not,
which can help the model capture the collaborative signals
between cascades and learn a better cascade representation.

Figure 5: Projection of learned cascade representations on Twitter,
where each point represents a cascade representation and the color
represents its incremental popularity. (Dark blue means low popu-
larity and dark red means high popularity).

6 Conclusion
In this paper, we studied the problem of cascade popularity
prediction and pointed out two factors that are not considered
well in the existing methods, i.e., the correlation between cas-
cades and the dynamic preferences of users. Different from
previous methods that independently learn from each cas-
cade, our method first combines all cascades into a diffusion
graph to explore the correlations between cascades. To model
the dynamic preferences of users, an evolution learning mod-
ule was proposed to learn on the diffusion graph chronologi-
cally, which maintains dynamic states for users and cascades,
and the states are updated continuously once a diffusion be-
havior happens. Moreover, a cascade representation learning
module was proposed to explore the structural and temporal
information within a cascade by aggregating representations
of users into a cascade embedding. Extensive experimental
results on three real-world datasets demonstrated the effec-
tiveness of the proposed method.
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Huberman. Predicting the popularity of online content.
Commun. ACM, 53(8):80–88, 2010.

[Tai et al., 2015] Kai Sheng Tai, Richard Socher, and
Christopher D. Manning. Improved semantic represen-
tations from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Pro-
cessing of the Asian Federation of Natural Language Pro-
cessing, ACL 2015, July 26-31, 2015, Beijing, China, Vol-
ume 1: Long Papers, pages 1556–1566. The Association
for Computer Linguistics, 2015.

[Tang et al., 2021] Xiangyun Tang, Dongliang Liao, Weijie
Huang, Jin Xu, Liehuang Zhu, and Meng Shen. Fully ex-
ploiting cascade graphs for real-time forwarding predic-
tion. In Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on Innova-
tive Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2021, Virtual Event, February 2-9,
2021, pages 582–590. AAAI Press, 2021.

[van der Maaten and Hinton, 2008] Laurens van der Maaten
and Geoffrey Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9(86):2579–2605, 2008.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 5998–6008, 2017.

[Wang et al., 2019] Xiao Wang, Houye Ji, Chuan Shi, Bai
Wang, Yanfang Ye, Peng Cui, and Philip S. Yu. Hetero-
geneous graph attention network. In The World Wide Web

Conference, WWW 2019, San Francisco, CA, USA, May
13-17, 2019, pages 2022–2032, 2019.

[Wang et al., 2020] Xiao Wang, Deyu Bo, Chuan Shi, Shao-
hua Fan, Yanfang Ye, and Philip S. Yu. A survey on het-
erogeneous graph embedding: Methods, techniques, ap-
plications and sources. CoRR, abs/2011.14867, 2020.

[Wang et al., 2021] Ruijie Wang, Zijie Huang, Shengzhong
Liu, Huajie Shao, Dongxin Liu, Jinyang Li, Tianshi Wang,
Dachun Sun, Shuochao Yao, and Tarek F. Abdelzaher.
Dydiff-vae: A dynamic variational framework for infor-
mation diffusion prediction. In SIGIR ’21: The 44th Inter-
national ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, Virtual Event, Canada,
July 11-15, 2021, pages 163–172. ACM, 2021.

[Weng et al., 2013] Lilian Weng, Filippo Menczer, and
Yong-Yeol Ahn. Virality prediction and community struc-
ture in social networks. Scientific reports, 3(1):1–6, 2013.

[Wu et al., 2019] Qitian Wu, Yirui Gao, Xiaofeng Gao, Paul
Weng, and Guihai Chen. Dual sequential prediction
models linking sequential recommendation and informa-
tion dissemination. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, KDD 2019, Anchorage, AK, USA, Au-
gust 4-8, 2019, pages 447–457. ACM, 2019.

[Xu et al., 2020] Da Xu, Chuanwei Ruan, Evren Körpeoglu,
Sushant Kumar, and Kannan Achan. Inductive represen-
tation learning on temporal graphs. In 8th International
Conference on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020.

[Xu et al., 2021] Xovee Xu, Fan Zhou, Kunpeng Zhang,
Siyuan Liu, and Goce Trajcevski. Casflow: Exploring hi-
erarchical structures and propagation uncertainty for cas-
cade prediction. IEEE Transactions on Knowledge and
Data Engineering, pages 1–1, 2021.

[Yang et al., 2019] Cheng Yang, Jian Tang, Maosong Sun,
Ganqu Cui, and Zhiyuan Liu. Multi-scale information
diffusion prediction with reinforced recurrent networks.
In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, pages 4033–4039. ijcai.org,
2019.


	Introduction
	Related Work
	Cascade Popularity Prediction
	Graph Representation Learning

	Problem Formulation
	Methodology
	Evolution Learning Module
	Cascade Representation Learning Module
	Prediction Module

	Experiments
	Descriptions of Datasets
	Baselines
	Evaluation Metrics
	Experimental Settings
	Performance Comparison
	Sensitivity to Publication Time
	Ablation Study
	Cascade Representations Projection

	Conclusion

